{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Smogseer training at 100 epochs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import xarray as xr\n", "import numpy as np\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", "from sklearn.impute import SimpleImputer\n", "from tensorflow.keras.models import load_model\n", "import matplotlib.pyplot as plt\n", "from tensorflow.keras.utils import Sequence" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2GB\n",
       "Dimensions:         (time: 366, lat: 291, lon: 512, bnds: 2)\n",
       "Coordinates:\n",
       "  * lat             (lat) float64 2kB 34.36 34.33 34.3 ... 24.97 24.94 24.9\n",
       "  * lon             (lon) float64 4kB 68.15 68.19 68.22 ... 84.75 84.79 84.82\n",
       "  * time            (time) datetime64[ns] 3kB 2019-01-03T12:00:00 ... 2024-01...\n",
       "    time_bnds       (time, bnds) datetime64[ns] 6kB ...\n",
       "Dimensions without coordinates: bnds\n",
       "Data variables:\n",
       "    AER_AI_340_380  (time, lat, lon) float32 218MB ...\n",
       "    AER_AI_354_388  (time, lat, lon) float32 218MB ...\n",
       "    CH4             (time, lat, lon) float32 218MB ...\n",
       "    CLOUD_FRACTION  (time, lat, lon) float32 218MB ...\n",
       "    CO              (time, lat, lon) float32 218MB ...\n",
       "    HCHO            (time, lat, lon) float32 218MB ...\n",
       "    NO2             (time, lat, lon) float32 218MB ...\n",
       "    O3              (time, lat, lon) float32 218MB ...\n",
       "    SO2             (time, lat, lon) float32 218MB ...\n",
       "Attributes:\n",
       "    Conventions:               CF-1.7\n",
       "    title:                     S5PL2 Data Cube Subset\n",
       "    history:                   [{'program': 'xcube_sh.chunkstore.SentinelHubC...\n",
       "    date_created:              2024-05-02T13:00:01.155492\n",
       "    time_coverage_start:       2019-01-01T00:00:00+00:00\n",
       "    time_coverage_end:         2024-01-05T00:00:00+00:00\n",
       "    time_coverage_duration:    P1830DT0H0M0S\n",
       "    time_coverage_resolution:  P5DT0H0M0S\n",
       "    geospatial_lon_min:        68.137207\n",
       "    geospatial_lat_min:        24.886436\n",
       "    geospatial_lon_max:        84.836426\n",
       "    geospatial_lat_max:        34.37759367382812
" ], "text/plain": [ " Size: 2GB\n", "Dimensions: (time: 366, lat: 291, lon: 512, bnds: 2)\n", "Coordinates:\n", " * lat (lat) float64 2kB 34.36 34.33 34.3 ... 24.97 24.94 24.9\n", " * lon (lon) float64 4kB 68.15 68.19 68.22 ... 84.75 84.79 84.82\n", " * time (time) datetime64[ns] 3kB 2019-01-03T12:00:00 ... 2024-01...\n", " time_bnds (time, bnds) datetime64[ns] 6kB ...\n", "Dimensions without coordinates: bnds\n", "Data variables:\n", " AER_AI_340_380 (time, lat, lon) float32 218MB ...\n", " AER_AI_354_388 (time, lat, lon) float32 218MB ...\n", " CH4 (time, lat, lon) float32 218MB ...\n", " CLOUD_FRACTION (time, lat, lon) float32 218MB ...\n", " CO (time, lat, lon) float32 218MB ...\n", " HCHO (time, lat, lon) float32 218MB ...\n", " NO2 (time, lat, lon) float32 218MB ...\n", " O3 (time, lat, lon) float32 218MB ...\n", " SO2 (time, lat, lon) float32 218MB ...\n", "Attributes:\n", " Conventions: CF-1.7\n", " title: S5PL2 Data Cube Subset\n", " history: [{'program': 'xcube_sh.chunkstore.SentinelHubC...\n", " date_created: 2024-05-02T13:00:01.155492\n", " time_coverage_start: 2019-01-01T00:00:00+00:00\n", " time_coverage_end: 2024-01-05T00:00:00+00:00\n", " time_coverage_duration: P1830DT0H0M0S\n", " time_coverage_resolution: P5DT0H0M0S\n", " geospatial_lon_min: 68.137207\n", " geospatial_lat_min: 24.886436\n", " geospatial_lon_max: 84.836426\n", " geospatial_lat_max: 34.37759367382812" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load your dataset\n", "ds = xr.open_dataset('S5PL2_5D.nc')\n", "ds\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Target data range: 1.0 0.0\n" ] } ], "source": [ "# Stack the features into a single DataArray\n", "features = ['SO2', 'NO2', 'CH4', 'O3', 'CO', 'HCHO']\n", "data = xr.concat([ds[feature] for feature in features], dim='feature')\n", "data = data.transpose('time', 'lat', 'lon', 'feature')\n", "\n", "# Convert to NumPy arrays\n", "X_data = data.values.astype(np.float32)\n", "\n", "# Normalize the input data\n", "scaler = StandardScaler()\n", "X_data = scaler.fit_transform(X_data.reshape(-1, X_data.shape[-1])).reshape(X_data.shape)\n", "\n", "# Impute nan values with the mean of the respective feature\n", "X_data_reshaped = X_data.reshape(-1, X_data.shape[-1])\n", "imputer = SimpleImputer(strategy='mean')\n", "X_data_imputed = imputer.fit_transform(X_data_reshaped)\n", "X_data_imputed = X_data_imputed.reshape(X_data.shape)\n", "\n", "# Add the time dimension to the input data\n", "X_data_imputed = np.expand_dims(X_data_imputed, axis=1)\n", "\n", "# Load your actual target data\n", "ds_target = xr.open_dataset('S5PL2_5D.nc')\n", "target_data = ds_target['AER_AI_340_380'].values.astype(np.float32)\n", "\n", "# Normalize target data to [0, 1]\n", "target_scaler = MinMaxScaler()\n", "target_data = target_scaler.fit_transform(target_data.reshape(-1, 1)).reshape(target_data.shape)\n", "\n", "# Impute nan values in target data\n", "target_data_reshaped = target_data.reshape(-1, target_data.shape[-1])\n", "target_data_imputed = imputer.fit_transform(target_data_reshaped)\n", "target_data_imputed = target_data_imputed.reshape(target_data.shape)\n", "\n", "# Ensure the target data shape is (num_samples, num_timesteps, num_latitudes, num_longitudes, 1)\n", "target_data_imputed = target_data_imputed.reshape((target_data.shape[0], 1, target_data.shape[1], target_data.shape[2], 1))\n", "\n", "# Remove samples with nan values in target data\n", "non_nan_target_indices = ~np.isnan(target_data_imputed).any(axis=(1, 2, 3, 4))\n", "X_data_clean = X_data_imputed[non_nan_target_indices]\n", "y_data_clean = target_data_imputed[non_nan_target_indices]\n", "\n", "# Ensure target values are within the valid range [0, 1]\n", "print(\"Target data range: \", y_data_clean.max(), y_data_clean.min())\n", "\n", "# Split data into training and validation sets\n", "split_ratio = 0.8\n", "split_idx = int(split_ratio * X_data_clean.shape[0])\n", "\n", "X_train, X_val = X_data_clean[:split_idx], X_data_clean[split_idx:]\n", "y_train, y_val = y_data_clean[:split_idx], y_data_clean[split_idx:]\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input shape: (366, 1, 291, 512, 6)\n", "Target shape: (366, 1, 291, 512, 1)\n", "Max and Min of Target Data: 1.0 0.0\n" ] } ], "source": [ "print(\"Input shape:\", X_data_clean.shape)\n", "print(\"Target shape:\", y_data_clean.shape)\n", "print(\"Max and Min of Target Data:\", y_data_clean.max(), y_data_clean.min())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training data shape: (292, 1, 291, 512, 6)\n", "Validation data shape: (74, 1, 291, 512, 6)\n", "Training target shape: (292, 1, 291, 512, 1)\n", "Validation target shape: (74, 1, 291, 512, 1)\n" ] } ], "source": [ "print(\"Training data shape:\", X_train.shape)\n", "print(\"Validation data shape:\", X_val.shape)\n", "print(\"Training target shape:\", y_train.shape)\n", "print(\"Validation target shape:\", y_val.shape)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAFbCAYAAAD7pqVKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhdR3nn/6mqc869varV2iVrsbzKu7GNbQibbWyMQybBmYQMyUDCEB6CPU/iJ8kMPPzCwCTDDOEZkhCWYZ4MycyEZxKyg41ZvGDAwoB3G2+yLMlaWru61cu995yq+v1RVeee22rtLXe3XJ/n6Ue627nnnrvU97zL9xXWWkskEolEIpHILETO9A5EIpFIJBKJHI4oVCKRSCQSicxaolCJRCKRSCQya4lCJRKJRCKRyKwlCpVIJBKJRCKzlihUIpFIJBKJzFqiUIlEIpFIJDJriUIlEolEIpHIrCUKlUgkEolEIrOWKFQikciMIYTgP/2n/zTTuxGJRGYxUahEInOcJ598kl/8xV9k9erV1Ot1VqxYwVvf+lY++9nPzvSuveKsWbOGn/3Zn53p3Si56667ohCLRE6SKFQikTnMgw8+yJVXXsnjjz/O+9//fv78z/+cf/fv/h1SSv70T/90pnfvVc9dd93Fxz/+8ZnejUhkTpPM9A5EIpET54/+6I+YN28eP/7xjxkYGOi4bdeuXTOzU5FIJDKNxIhKJDKHefHFF7nwwgsPESkAixcv7rj85S9/meuuu47FixdTq9W44IIL+MIXvnDI40L65P777+fKK6+kq6uLiy++mPvvvx+Af/iHf+Diiy+mXq9zxRVX8Oijj3Y8/r3vfS+9vb1s3LiRm266iZ6eHpYvX84nPvEJjmVY+7Zt2/iN3/gNlixZQq1W48ILL+R//a//dewHpcKmTZsQQvDpT3+aL33pS5x11lnUajWuuuoqfvzjH5/Qft9///0IIcrjMfm5/vIv/7Lc3uc+9znA1eKEv0gkcnzEiEokModZvXo169ev56mnnuKiiy464n2/8IUvcOGFF/JzP/dzJEnC1772NX7rt34LYwwf+tCHOu67YcMG/s2/+Td84AMf4Fd/9Vf59Kc/zTve8Q6++MUv8pGPfITf+q3fAuCTn/wkv/RLv8Rzzz2HlO3zHq01b3vb27jmmmv41Kc+xd13383HPvYxiqLgE5/4xGH3cefOnVxzzTUIIbjttttYtGgR3/jGN3jf+97HyMgIv/3bv31Cx+krX/kKBw8e5AMf+ABCCD71qU/xzne+k40bN5Km6Unv91R84AMfYPv27Xz729/m//yf/3NC+x2JRAAbiUTmLN/61resUsoqpey1115rf//3f99+85vftK1W65D7jo+PH3LdTTfdZNeuXdtx3erVqy1gH3zwwfK6b37zmxawXV1ddvPmzeX1/+N//A8L2Pvuu6+87j3veY8F7O23315eZ4yxt9xyi82yzO7evbu8HrAf+9jHysvve9/77LJly+yePXs69uld73qXnTdv3pSvYfK+33LLLeXll156yQJ2wYIFdt++feX1//zP/2wB+7Wvfe249/u+++475DVXn+vLX/5yed2HPvQhG39mI5GTI6Z+IpE5zFvf+lbWr1/Pz/3cz/H444/zqU99iptuuokVK1bwL//yLx337erqKv8/PDzMnj17eNOb3sTGjRsZHh7uuO8FF1zAtddeW16++uqrAbjuuutYtWrVIddv3LjxkH277bbbyv+HCEmr1eI73/nOlK/FWsvf//3f8453vANrLXv27Cn/brrpJoaHh3nkkUeO9dB08Mu//MvMnz+/vPyGN7xh2vY7EomcWmLqJxKZ41x11VX8wz/8A61Wi8cff5x//Md/5DOf+Qy/+Iu/yGOPPcYFF1wAwA9+8AM+9rGPsX79esbHxzu2MTw8zLx588rLVTEClLetXLlyyuv379/fcb2UkrVr13Zcd+655wKulmMqdu/ezYEDB/jSl77El770pSnvc6IFwpNfTxAt07HfkUjk1BKFSiRympBlGVdddRVXXXUV5557Lr/+67/OV7/6VT72sY/x4osvcv3113P++efz3//7f2flypVkWcZdd93FZz7zGYwxHdtSSk35HIe73h5DkezRCPvwq7/6q7znPe+Z8j6XXHLJCW17Ovf7cAWxWuvj3lYkEjk6UahEIqchV155JQA7duwA4Gtf+xrNZpN/+Zd/6Ygu3Hfffafk+Y0xbNy4sYxGADz//POA6yqaikWLFtHX14fWmhtuuOGU7NfROJb9DtGYAwcOdDx28+bNh2wvdvlEIidPrFGJROYw991335RRgbvuuguA8847D2hHFKr3HR4e5stf/vIp27c///M/L/9vreXP//zPSdOU66+/fsr7K6W49dZb+fu//3ueeuqpQ27fvXv3KdvXKkfb79WrV6OU4oEHHuh43Oc///lDttXT0wMcKmoikcixEyMqkcgc5vbbb2d8fJxf+IVf4Pzzz6fVavHggw/yN3/zN6xZs4Zf//VfB+DGG28kyzLe8Y538IEPfIDR0VH+5//8nyxevLiMukwn9Xqdu+++m/e85z1cffXVfOMb3+DOO+/kIx/5CIsWLTrs4/7rf/2v3HfffVx99dW8//3v54ILLmDfvn088sgjfOc732Hfvn3Tvq/Hu9/z5s3jX//rf81nP/tZhBCcddZZfP3rX5+yfuaKK64A4N//+3/PTTfdhFKKd73rXaf0NUQipxtRqEQic5hPf/rTfPWrX+Wuu+7iS1/6Eq1Wi1WrVvFbv/VbfPSjHy2N4M477zz+7u/+jo9+9KP87u/+LkuXLuWDH/wgixYt4jd+4zemfb+UUtx999188IMf5Pd+7/fo6+vjYx/7GH/wB39wxMctWbKEH/3oR3ziE5/gH/7hH/j85z/PggULuPDCC/lv/+2/Tft+nuh+f/aznyXPc774xS9Sq9X4pV/6Jf74j//4EC+bd77zndx+++38v//3//i///f/Yq2NQiUSOU6EnY4quEgkEvG8973v5e/+7u8YHR2d6V05LubqfkcipzuxRiUSiUQikcisJQqVSCQSiUQis5YoVCKRSCQSicxaZrRG5XOf+xx//Md/zNDQEJdeeimf/exnee1rXztTuxOJRCKRSGSWMWMRlb/5m7/hjjvu4GMf+xiPPPIIl156KTfddNMJW2RHIpFIJBI5/ZixiMrVV1/NVVddVZorGWNYuXIlt99+O//xP/7HIz7WGMP27dvp6+uLzo+RSCQSicwRrLUcPHiQ5cuXI+WxxUpmxEel1Wrx8MMP8+EPf7i8TkrJDTfcwPr16w+5f7PZpNlslpe3bdtWDlqLRCKRSCQyt3j55Zc544wzjum+MyJU9uzZg9aaJUuWdFy/ZMkSnn322UPu/8lPfpKPf/zjh1z/a3f+AllPesr2MxKJRCKRyPTRGsv5P7f8I319fcf8mDnhTPvhD3+YO+64o7w8MjLipr/2pGS9UahEIpFIJDKXOJ6yjRkRKgsXLkQpxc6dOzuu37lzJ0uXLj3k/rVajVqt9krtXiQSiUQikVnCjHT9ZFnGFVdcwT333FNeZ4zhnnvu4dprr52JXYpEIpFIJDILmbHUzx133MF73vMerrzySl772tfyJ3/yJ4yNjZXTXiORSCQSiURmTKj88i//Mrt37+YP/uAPGBoa4rLLLuPuu+8+pMA2EolEIpHIq5cZLaa97bbbuO2222ZyFyKRSCQSicxi4qyfSCQSiUQis5YoVCKRSCQSicxaolCJRCKRSCQya4lCJRKJRCKRyKwlCpVIJBKJRCKzlihUIpFIJBKJzFqiUIlEIpFIJDJriUIlEolEIpHIrGVOTE8+Fva1uvnp/1tXXm4shBve/jAA39u2Fu6bjyzgwMUFt1zx+EztZiQSiUQikePgtBEqidS0+mHVp5040Vetg7e720aG+lj3f5/FDI/AB14LV8zgjkYikUgkEjlmThuh0p80ec0tP2X9gstBgOkvOM/ftuasnTz7sXMQWpCdcXBG9zMSiUQikcixc9oIFYCBdIKb3/DoIddfODDEhdcOzcAeRSKRSCQSORliMW0kEolEIpFZSxQqkUgkEolEZi1RqEQikUgkEpm1RKESiUQikUhk1hKFSiQSiUQikVnLadX1E5kZto4PsPGfzwJgYrHlpusfmeE9ikQikcjpQhQqkZOmsJJ0zGIFqKaY6d2JRCKRyGlEFCqRk2ZVz34G3zuGEhaJnendiUQikchpRBQqkZNGYulPmjO9G5FIJBI5DYnFtJFIJBKJRGYtUahEIpFIJBKZtUShEolEIpFIZNYShUokEolEIpFZSxQqkUgkEolEZi1RqEQikUgkEpm1RKESiUQikUhk1hKFSiQSiUQikVlLFCqRSCQSiURmLVGoRCKRSCQSmbVEoRKJRCKRSGTWEoVKJBKJRCKRWUsUKpFIJBKJRGYtUahEIpFIJBKZtUShEolEIpFIZNYShUokEolEIpFZSxQqkUgkEolEZi3TLlT+03/6TwghOv7OP//88vZGo8GHPvQhFixYQG9vL7feeis7d+6c7t2IRCKRSCRyGnBKIioXXnghO3bsKP++//3vl7f9zu/8Dl/72tf46le/yne/+122b9/OO9/5zlOxGyUbRxewfmj1KX2OSCQSiUQi009ySjaaJCxduvSQ64eHh/mLv/gLvvKVr3DdddcB8OUvf5l169bxwx/+kGuuuWbK7TWbTZrNZnl5ZGTkqPuwp9XDI1tWYoxEj6QkI4oHreB1yzad2IuKRCKRSCTyinNKIiovvPACy5cvZ+3atbz73e9my5YtADz88MPkec4NN9xQ3vf8889n1apVrF+//rDb++QnP8m8efPKv5UrV055vzGdcddPL+Qbz13Aj144E7ulG/VSnfqOhOyAYP+O/ul9oZFIJBKJRE4p0x5Rufrqq/nLv/xLzjvvPHbs2MHHP/5x3vCGN/DUU08xNDRElmUMDAx0PGbJkiUMDQ0ddpsf/vCHueOOO8rLIyMjpVjJreRbj1/kbjCQ7k1AAAKEBpkLZA6qCaKItcORSCQSicwlpl2o3HzzzeX/L7nkEq6++mpWr17N3/7t39LV1XVC26zVatRqtUOu/+ZjFyG76mS7FcIIhAVdt3Sdf4DWo/MRBkQBUjvR0rdB8Y3+C7j5/J+e8OuLRCKRSCTyynHKQwwDAwOce+65bNiwgaVLl9JqtThw4EDHfXbu3DllTcvRyPYoajsThBEse902lrxuO6uv2sqKecOoJhQ9lvlvGmLswgbCQjJusSPZNL2ySCQSiUQip5pTUkxbZXR0lBdffJFf+7Vf44orriBNU+655x5uvfVWAJ577jm2bNnCtddee9zbXn3Ny6juOgDn9O8ur5/QKc0bttKV5Kzp2cfBRo3R1RnLL9rJyvr49LywSCQSiUQip5xpFyq/+7u/yzve8Q5Wr17N9u3b+djHPoZSil/5lV9h3rx5vO997+OOO+5gcHCQ/v5+br/9dq699trDdvwcibW9+8h600Ou71I56+a1vVkuXbKN8QW7WVo/eFKvLRKJRCKRyCvLtAuVrVu38iu/8ivs3buXRYsW8TM/8zP88Ic/ZNGiRQB85jOfQUrJrbfeSrPZ5KabbuLzn//8dO9GB/1Jk/6kefQ7RiKRSCQSmVUIa62d6Z04XkZGRlx05v5fmjKiEolEIpFIZPbRGs35izf/LcPDw/T3H5tlSOzXjUQikUgkMmuJQiUSiUQikcisJQqVSCQSiUQis5YoVCKRSCQSicxaolCJRCKRSCQya4lCJRKJRCKRyKzllDvTRk4dEzrlvocuwvYU3HzpU0jmXKd5JBKJRCJHJEZU5jBSWBhokXQX3PvSOTO9O5FIJBKJTDsxojJHaZqEwkqwgiTVZGkx07sUiUQikci0E4XKK0zTuENekycuLHIreeDbl1D0WGxfQZ4rrHXbPpntRiKRSCQy24ipn2nEIBjT2ZS3NU3CvlY333l6Hd/dePZJP5eaECTjArU/xeyu09rZzXeeWnfS241EIpFIZDYRhco0YBDsa3WzZWw+9z913pT3+d7mtTz5z+vo/WmGteKkn1N3WdS4IBsRqIZA5ALMyW83EolEIpHZREz9TAMTOuWHD5/rLvToKe+Tppq8x/8/O7n0TCoMb3zrEzzwnUswCdx03SMntb1IJBKJRGYrUaicJAbB7kYvqPZ1e1o9LMzGOu73pjNehDOm73lrsuCtN0aBEolEIpHTm5j6OQkMgi1j83n62ZVYabHSQi758cbVM7ZPTZOwZXw+2yf6GSlqM7YfkUgkEolMBzGichJoK3j6uTNI+lsYLTAHU5Aza7o2nNd56qUVWC1YsuwAVy56eUb3JxKJRCKRkyFGVE4S1Zdz0znP8MZzNiD7cgB6+hoztj+La6O89pyX6B0cpydrkdv4FkcikUhk7hJXsZMgFYa3nfMMAD2qxevPfpGuBRO8ccXGGd2vLpWzvH+EriRnQqdM6JRdzV4O5F0zul+RSCQSiRwvMfUzjfQnTa5b/cJM7wZdKmdJ9wgtkzCa1ziY19l5sJfB7gkG5k/M9O5FIpFIJHLMxIjKaYjE0pu06EuaAIy2MibGazSKqEsjkUgkMreIQuU0JZMFi7KDzMsaSGExRrD3QC9bxufP9K5FIpFIJHLMRKFympIKzbxkgkwWCEAIKEYyhkb7ZnrXIpFIJBI5ZqJQOY1pmJThvItmkYCwkBiUNDO9W5FIJBKJHDOxaOE0QQrD/HScbtkiFZrcKna05rG30cN4M6Wnu8ngov0s6hqd6V2NRCKRSOSYiUJlDmMQbB+fR3fSYnH9IPPUBPPUOBrJsO7iYF5nuFGn2cjoGRjlwoGhmd7lSCQSiUSOi5j6meMczGsYBAqDRqCRjJuM/XkPYzqj0BKjBTpOVo5EIpHIHCRGVOY4q3r3k8kC7TWnsQJjJVLY0vht1bwDdCetGd7TSCQSiUSOnyhU5jASS49yAqQwij15H4P1Mbplk4ZM6VEt8myCgTSavEUikUhkbhJTP6cRhZGkoiiLaSd0ys6JPjaOLpjpXYtEIpFI5ISIEZXTCI1kT9GPFMbVqbS6GG7U6U7zmd61SCQSiUROiChUTiMKo9jWHKA3aTKhUzKluXjBDqSwM71rkUgkEomcEFGonGY0TQoFFFZhrKBLxWhKJBKJROYusUblNMMgGCm62NfqpqHTV/z5azJnee0APX4gYiQSiUQiJ0OMqJxmaCuY0CmD2TiD2fgr9rw9SZPCSBJpGNZdNE1CbiWpiJb9kUgkEjlxolA5DWiahEd2rWBJ7yiDtXFaRiF5ZetSxgpnPIehfO4oUiKRSCRyssTUzxynaRK+t3ktxkgmipSRvE5hXvm31SAYyevsafYwUtRe8eePRCKRyOlJjKjMcYwVGC1ptFJGpEEbiZKGg3md8/p3vWL7oa2gZVwBbyQSiUQi08Vxn3o/8MADvOMd72D58uUIIfinf/qnjtuttfzBH/wBy5Yto6urixtuuIEXXnih4z779u3j3e9+N/39/QwMDPC+972P0dE41fdEMVZQ5IpGK6VRJGgjGW7UeWDbWr698Tx+snvlKd+HVBgW10ZZWj9IfyykjUQikcg0cdxCZWxsjEsvvZTPfe5zU97+qU99ij/7sz/ji1/8Ig899BA9PT3cdNNNNBqN8j7vfve7efrpp/n2t7/N17/+dR544AF+8zd/88RfxauYLpXzhrUvYq0gzxXNPCE3EmsFRaHQWqJnIBUUiUQikch0cNypn5tvvpmbb755ytustfzJn/wJH/3oR/lX/+pfAfC///f/ZsmSJfzTP/0T73rXu3jmmWe4++67+fGPf8yVV14JwGc/+1ne/va38+lPf5rly5efxMt5ddA0CVKYjmJVa8EYSV4oDpo6WkvyVoJuKprdCoN4xQtsI5FIJBI5Wab1VPull15iaGiIG264obxu3rx5XH311axfvx6A9evXMzAwUIoUgBtuuAEpJQ899NCU2202m4yMjHT8vVoxCL577yV85/uX0jROZ0osaVaglMEYQauZ0Gok6JaElmR0az/f27r2mLYf2orDX5XcStfZE4lEIpHIK8S0CpWhoSEAlixZ0nH9kiVLytuGhoZYvHhxx+1JkjA4OFjeZzKf/OQnmTdvXvm3cuWpr7mYzZjUYno09794DuDSP9eu2kSaaqS0CGkRykdPDIiWSwMdjgmdMqYzxnTGvc+fy/0vncOju8/g6X3LOoTJ43tWsPHgAnIrWZQdpMtPbo5EIpFI5FQxJ7p+PvzhD3PHHXeUl0dGRl61YkViedubHp3yNiEsQoCUFmssGhBaIFuCViNhQqeHWOpP6JQHNp5NMepcbGV3QZJogEMSRWPNDCUN+1vd9CcNJnQ23S8vEolEIpEOplWoLF26FICdO3eybNmy8vqdO3dy2WWXlffZtauzbbYoCvbt21c+fjK1Wo1aLXpzHAmJJVWapknQWqALl/YRuUAWIDfX+WH3at6yakPH434ytBKdS0gNMjW8/qwXD9u1k0jD5Qu2AUSREolEIpFXhGlN/Zx55pksXbqUe+65p7xuZGSEhx56iGuvvRaAa6+9lgMHDvDwww+X97n33nsxxnD11VdP5+68quhSORcs3InWEmskppBgBAgoui3pBSOHiBSAN6zYSFovEALWnTFEb3L4dM7rl790Kl9CJBKJRCKHcNwRldHRUTZsaC94L730Eo899hiDg4OsWrWK3/7t3+YP//APOeecczjzzDP5//6//4/ly5fz8z//8wCsW7eOt73tbbz//e/ni1/8Inmec9ttt/Gud70rdvwcI5vGBlnTs++wtwtpEEpipcUmlmzJOG9eeahICRgtsVrw9IsrGFg3wUA6cSp2OxKJRCKR4+a4hcpPfvIT3vKWt5SXQ+3Ie97zHv7yL/+S3//932dsbIzf/M3f5MCBA/zMz/wMd999N/V6vXzMX//1X3Pbbbdx/fXXI6Xk1ltv5c/+7M+m4eWc/mw4uJANj66EKzhErKRS09fdZLyZYoxEK4lVFimP3Jascwm5BOHut3V8ACkMS7sOxpbmSCQSicwowlo751aikZER5s2bx/vu/yWS3ozH9y7HWIESlst8DcXpyl0PXg7SYpXllqseP+T2A3kXjw2toNVS5BMpNBXdi8amTPsE7tl0Lo29XWBh9Vm72Lx1IUIZ3rrumThYMBKJRCLTRms05y/e/LcMDw/T399/TI+Z05alBnhq3zL2/GQJB364hN0/XnLUx8x11KIGk61McivZNDbIxtEFbBubR54rsML/QWM8Y+v4wGG3ef2a5yEzYGHzxsVQCGwh2XhwYfRNiUQikciMMqeFCsDQvn6Kbkveayl62sGhMZ3xwsiiGdyzU8Nbz3nWCRUJzww7YWasZNvwPJ7dvIzN2xeQNxPyRlJ2/bCnxvO7j3IsqoETI6AQbNi0BG0Fz40sLv9Ox2MaiUQikdnLnBYqEnjT2g3IlgBhsQp+snslj+1dwRO7l/HizoUzvYunBJsYkJaNW5xxXk0WXLhoCGuE+2tJaCqEdtEQKzlqnUr/wrHOT4MVoAXP7F/Ki1sXsWHLYjZsWcwLWxcfdhuRSCQSiUw3c1qoBISBZNUY9RWjHBjtYtumhezbMQ/dVDx9YGpvljmNhMFlwyxaMnzobSHlIy02NdjMQmIZP1hj4+iCw24yS7SLqgQ9YwEjeHnzQmxodTZu28+NRLESiUQikVeGOeFMeySkMCTnHuS61S8AsKfVw4+GzgErEWOKLckgFw5Mbc0/13hwxxr3HwPXLt3ccVtNFsxfeJD9O/td9453zFe1gv6+cXKtDjtF+btbz6Lx/DyUBNNtsMIijHDCRQmstiAteFv+l/cOcF7/rim3FYlEIpHIdDLnhUoqTClSAHpUi2zpOGZDL7puWbH4wMzt3DSzf+s8FwMTh6ZxulTOuQt289CePoRP89hcohuK7gU5ly3YdNjtjm/uJ5sQFF0WNAjp0j4yd2kjUrCpe16ZGpSKnUCRSCQSeWU4LVI/VZomoTWRUr/gAIvO38Mlg9tnepemjeVr97ioRjp1vUkiDFlPi6y7hUydmBCjCbv29x1xuzaxGGXB4iIpuHSa0AKZi7LWRShLkhZ013I2jQ1O4yuLRCKRSGRq5nxEJTCmM+5/bB2iJUgPSt54wdMzvUvTzuULtrFjaD5Iy4M71iCERQpIlOaKhVvpSZqcuWgv20f6MVqip4i8TMUZ5+xi+5NLvCgBW/lUCEO7dkVasqxgQfcYTX3afHQikUgkMos5bSIqTZ3Q90JC72bV2Wp7uuHTOsPD3QyP9LB/pJv9B7sBlwZbWB9DACoxLvoiLcXeOg/tXH3YTV4yuB2TgsxBFC7tg6D0awl6Rwg3+LCuCnqOMBMoEolEIpHp4rQRKn1pg9pb9lC/bjdLXjvzxbMbDi7krp9eeOqe4DA+bFIYEqXJ0gKVGWxikROS4dH61A8ot2fBCp/y8c1D0mLD8wiX+lFeKHUnrSN2EUUikUgkMh2cNvH7VBiuXrL56Hc8xWyf6Ofxn5yFbAlENv3TCS5b8zKPbzkDIQBhEbihguuHVnPt0s0oYamnBVoZGs0ULdIpi28nYxNnyy8MyEKglcVKEBI/hdmilEFJQ8solqQNaqqY9tcXiUQikUiV0yaiMltYUBund+0wCLjwik3Tvv2lXQddV48XHxYwVjDeqAGu+2dZzwitQlFOcbKHCb9UuPyil9A1XJ1K4aIqSLAq5H1AKUNNaXKjSIWhR8X0TyQSiUROLadNRGW2UJMFr122hb2De1jeNXLqnshOKiABRooaj+xYiZSGVivBaOWUzPIGr121ZcrN3P3COvSBDFEIsnGBbIFRgABTMwjthAs4d9vutEVu1Kl7XZFIJBKJVIgRlVNATRanTKRILNes2dS+wgoEoAvJT7atIs+VFykSUwhqCyZ43doXGUgnptzeNWs2uWjJuMQqN4YA4f1T6hqbGUzNWfZftXwLK3v2s6Z33yl5bZFIJBKJTCZGVKaRoUYfT3/7XFoDhpvf8OgpeQ6D4EdbVrm0jnU1JEJYhLRYK0hTjRCWphFYLWnt7ubHYrWbkDwFA+kEJBbdZbG5v1L42tpCgrK8/qIXkNVUjzid26oikUgkMpuIQuUkmdApD9x/McKAagqSBiQ7JN/4/uXc/DPTK1a++cI6AIwRCAFSGZJU8/qVLwEwVmQ8u3cx1goaRkJTokYlrXlTv813PnYJ6d4ElVh0t8FIN8tH5riUkRagLP1pA8n0FwZHIpFIJHI0olA5SQyC9KDAKpAFNOdbXv+Wp07Jwv7ms17gvg3nIqVFJZo3rdkAuI4ngKZ083wsYK1AFAJZgDaHKabVribFSoGwAptajDUghCuilZbrLng2ipRIJBKJzBhRqEwDwgAC8l7Lm657gpo8NW27NVkgpSlbhYNAmdApP9qxClEprJXSuBZjBenLNb5dO4+3rn1u0o77+/s0EspiM9CJBQnXXfIMXSonEolEIpGZIhbTTgfexVU1BPc9cMmpfSppkb4eZTJKWJQXH8JPO7YCMGCniqooi0m9h4r0E5JTAzUDNc33XjoLczhnuUgkEolEXgFiROUk6VEt3vQLj7xiz3f92ue596VzEMLywLa1vHHFRrpUzmuXbeGn+5egjaTVyMgnUkRTukiJYEphc/OlT3H30xfCSOLElq9JEcoiM01Wi4ZukUgkEplZolCZBkINR4g+GMRx1XXc+dglJHsTBHDR6zYctbW5lhVkiSZLOoWEtYJmntAYz2AkIRmVR2zQkVisBZULjBVYP3GZxCCFbRvGRSKRSCQyQ8TUzyRONNWxp9XD/f/yGh74u9fwnW9ffnwP1q7TRjUExh75LZFY+upNemtNMqUBV6PyyM4zmGilFFpicoXQwjvLOk8UubGL77x07pTPLQo3NRmAxEVUEBatJfe+dE5M/0QikUhkxogRFZw40T41ct/Gc7hy5csMZuPHtw0rUBOQTIBJj21hz70oueHyp0mlPuYozCULtvPE3uVctmAbTZPw0PbVGCMwRlDkCRQCm1g0zgpfaIGVkKlDwyu3XPokdz5+MaKhIDPITJOkGmuhyBOMjiIlEolEIjPHq1qo5FZirOSBTWfRGs0QiZm66PQYWFwbZfEvP3xMz1l4C/p7nzqfbGeKzAXLf2Yr6+btPKbnklguW7ANg0vZpEpjpGCikaIbCtFytSkhOCPPGOPGs5470gaxiSu+FdIihMVohW4qaEmaOondP5FIJBKZEV7VQuWBzWfT3NGNTS0kFptLrjhv03FHU45G0yQ0vTj5/nPn0P1szUU4eiy6ZjEKkuN0ezUIHt2zAmsFtbTAWEGjmYJxqZxQRIvATVqeggmdurSOFohcYKXEJgZVMy4y05LIccn37r2YG976aPRTiUQikcgrzqtaqChlsJnl7HN2cF7/rlP2PA/tWIV+aD4AdQW65qId/Zfu5eolm094u/WkINeKwkgKXaltsW4KMgAG8mbChE4PiYrc++Q60j0JKvERFSExImHCCmxLIprSue2OCfa1ukuhMt1CLhKJRCKRw/GqFipvXrkBVr4yz2VSMKlFnDfKDWdOPXfnWAjpKmNF2XJsrECbTqEiCmdEJ7RAbq7x/draQwzfRGrcEELwxbQCkNhCuMe1XGTGZPDE3ecjtCvOve7njp7iikQikUhkOnhVC5VTTdMk7G1202ymtNa0uOXiJ096m9vGBxhp1svi35DVqSZlhHV2/lZB0W2RZ4xz42RXWkBmrtVHarDCiZJSsFiB9J1AVlmafdYZ2cbsTyQSiUReQaJQOYVsPLiALT9ZgTCQrh2blm2u6dnH0/lSpBcqTa3QRqC1pGi5Qlrh0z75gOE1l7zI0vrBKbf1tnOe4c6RS8l2K1fHIpxgERaXMupvq5K3ve6xWKMSiUQikVecKFSmYKSoURhFyygW10dPeIHuSnKKhTldAw2uW/1Cef1Qo49M6uOq9cgr/ioXDgyV1/14aBXNPGFitAYHU5KDEtkSCAO1nYqHnz2TWy574ojblr74tjXfuFoVz/WvfeqUzS2KRCKRSORYiEJlCjYOL2SsmTE6VufNZ71wwov1mp59rLl0X3l5qNHH0Fg/2zYtpGfxmKuROUbGihqp1DR1wmA2zoG8i4ZOaLRSmo0UO+6caNWE6HSjPYrGSuc1sbsUqiG48DWbWNW9/zhfZSQSiUQip47oTDsF2gqkNNTqx+YdklvJxtEFR73fk9uXs+8HS0lGFPO6J45rn3qSJl0qpy9tYBBsOTifF/Yuop7lmFw6d1lcfYowlO3JoinZNDZ42O3eePazFD0WoeGFXYuY0Olx7VckEolEIqeSKFSmYLRRo9CKVGm2jc+b0kLeIHhhZBHPDC/h6X3LeGbTsqNud7B/jInVLZZcspPLF2w76v2HGn3sa3UzpjNaJkFiSYVBYhmoT7Cwd4zLF29zPihalCZvVoFNwCSQ7VP8dMtR9s1HXeQjfexvdR11vyKRSCQSeaV41ad+tozP50Cji1V9+xlIXZSjv6vB8HgXSMPz25ew8pz9SOFW8/VDq6mnBb1pi+e3LIGWBCMgPbph2xULt8LCrce0T8YKto/0019v0l9r0J82QLXvE1I0E9qbvGlcK3HiunOsAN1tMQtbzJ8/OuXzPLV/GfvGu5CFs9hHUL7OSCQSiURmA69qobJlfD7PDS2mNVyj95xmKVQuX7CN706cBYC18PieFbQKhbWCkZcGMHWD7M1ZuOgge7YOuFk6QvLY3hWcM7CbZ/cvpjdrHWIit+HgQqwVnNO/+4j7NVGk7DzYy5K+UXqSFoWVtIyiaZKyXsYg2OpblZ1QaQ8WDKJDzyu45YKnD/s8mzcvorY9JV+aUyzTIKA7aZ3g0YxEIpFIZPp5VQuVlw8M0DqY0TU4wUDWWTOyvH8EISyN7gnGWhkHXh5ANAWmbli0cj9KGi5fuI3vF4rRbf0ILdj28gLGmhkHdvWR9jU5r38XQ40+ntuzGK0lE3u6XZrlXI4oVs7r30VNFazq2Y/EsnF0AYWRjBUZtaxd2Ltp/3xGh7sQLT99uSWwykVV7DGMLFq0/AAHeru5auVWFtemjrpEIpFIJDKTvKqFyrL+EWppwZp5+8pW4cf2rkBbQU1pzhvYSepbaO7c2Q9FgigEE62UN53xIgZBIg02MYRK1gN7ekFZdK5YP7Sag6NdFLu6kC1B6mtzt4/0HzWqsqan3S2UG4UUFmMlg9k4BsGm0UEaExmMpiRjviW5AAxIBEb5/M8ReO3iLbD4hA9fJBKJRCKnnFe1UFnbu5e1vXvLy4/tXcH2XQMAJD5yUU9yGkXq7OZrBgyM7uxlfbIaKWD/nr5y+N/KlXtpacXOnfMwhWTfrn4XQenSmERicwEGUqWPaz8X1MfYPjqPVX2uLmXjwQXsHuvxBm+uiDY/b5z6490It4vOEO745hyeUjaNDbJztA9tBGsG9rG8a2SmdykSmXG+9Z3X8JbrHytPiCKRyKEct1B54IEH+OM//mMefvhhduzYwT/+4z/y8z//8+Xt733ve/mrv/qrjsfcdNNN3H333eXlffv2cfvtt/O1r30NKSW33norf/qnf0pvb++Jv5JpoL/WYCgxmMI1Q+0Z7aGW5rSKhCTVFN1gtUBIy/69fVgtIJdgYc3ZO7lwYIh9rW72jXSzcuEBxloZew70ghWYXJJ05SycN8qynuNbpBdmYxTdkoF0AoNg91gPxkiEtCw6bw/aSFb0DbPh8bMouiG95ABCWBZ1NU7FYTohDjS62D/cg7Uw3hvTTJHTm288dwFqSx2kC2xaSen4LGhft/Apyz3JZdz45jidPBI5HMctVMbGxrj00kv5jd/4Dd75zndOeZ+3ve1tfPnLXy4v12q1jtvf/e53s2PHDr797W+T5zm//uu/zm/+5m/yla985Xh3Z1pZ27uXl9IFtIxASsvaBXvZNtJPIg0mK0BYdKGwhXTThVsS4etCgltsT9LiouU7WN41wlCjjwOjrt3XSMnCeaPH1JY8FZNt8I0VCGW5ctHLgOv+2fL6vczL8hN+jlPJqr79WOBgo0ZdRbfbyOnH+qHV7N84iLBQ3ynJhtu3Ceu8ioR2PkdWAhLyHsG8F0C/ScSOu0jkMBy3ULn55pu5+eabj3ifWq3G0qVLp7ztmWee4e677+bHP/4xV155JQCf/exnefvb386nP/1pli9ffshjms0mzWazvDwycurSBkJY1i7bw7xsgsX1UYZG+5DCYKzAGInOweauJdkqy+qLhzp+YGqyKNMa87MJVgwOs3OkD6sMqTQ8fWAp2/fN48xFezm7b89x75/Ecs7gHp7etZSLVuwor+9SOa9btumkX/+pYjAbZ6Rep5EnbBkeoJ7kLMymZ/5RJDIbWNk/zL50gJ5N7mc17/MGjBpnyGg6zRhLoj6JRI7IKalRuf/++1m8eDHz58/nuuuu4w//8A9ZsMA5t65fv56BgYFSpADccMMNSCl56KGH+IVf+IVDtvfJT36Sj3/846diVw/hoqU7mJ+Nd+SME6URwlJoiVAWEgMJXHjm9o6i1wmd8sSe5XSlOZcMbqcmC+bXxml0J6zsO8DQWD8v756PHsl4bmwZrOGExMrCbIwLFw/NuYU+14pWkdBspIzPy2CO7X8kAs5mYPMDq0uDxdaZDd6+7mnO6D6AvMiw56xe54P03GK6hiRCeGdN4+wOSir/v/fey0A6UXPjDY+8si8oEpnlTLtQedvb3sY73/lOzjzzTF588UU+8pGPcPPNN7N+/XqUUgwNDbF4cWerSZIkDA4OMjQ0NOU2P/zhD3PHHXeUl0dGRli5ciXyFBSgLa6N8tDO1bQKRZZoCi2xSiCEdT840kDmLq/p2YdBsPHgAhpFyniecnC8RitrO7PNzyboS5v0qBZdKmdh1yiFcbfPrx37UMLJzAaR0jQJ39+yljQteOOKjUe9/xk9ByisZL/qoq6ObTxBJDKb2Do+wMYfrSLJQeVOWDTH2j+jy7tGyojqtq4FWOXq3UziIyuToyc+ulLf60wXpxortqfVw6P3ncdbb4oCJvLqZNqFyrve9a7y/xdffDGXXHIJZ511Fvfffz/XX3/9CW2zVqsdUucCYOypmQDQKhSNZkqzlfCaFVt5enc7jZWm2rX+Aj/ZvZJ6UiCEZayVMd5MKQqFqIR1a7JgrNXNpoODSGFZUB/jjO4Dp2S/ZwJjXErsWOhSOWv79lL0SrI4lTkyg9z540uRDckbX/c0PerYTQ5bRpEcFJiaBeFMFus7Eu5+YR1vO+eZzjv7gtnyop2U5anO5fI3WAX33HkFIq/UsgD1Ubj7gct52xsfPYFXG4nMbU55e/LatWtZuHAhGzZs4Prrr2fp0qXs2tXp2FoUBfv27TtsXcvhyK0gm86drXDpim3UVU5v0sIC3VnOusGdADyxexmtIiHXEiGcx0mhJUWhMIWkWUju2XQuXbUW87snMFagjSS3gsK4IYHbR/ppFQnnL9p5SKHsXMFYgS4UWkvuf/nsY5oGXZMFh0rOSOTUc9eDl5MdkJjUUsvd2YQ+FmdEXFTjsXvOwySgUt+1owALMgc9McVPqbBtsWLbaZ/wlEGkSON1igAjIRlz25SFi8SYFIpuyPZLvnXPawDIBwtuufyJkzkckcic4ZQLla1bt7J3716WLXOD8a699loOHDjAww8/zBVXXAHAvffeizGGq6+++ri23TApeV4vre9Plsf2rmC8lVJoSU/Soke1eHDHGmqJ5sLBIbp8uqIny1HSlkW0uVZIaUhTjbVgtEIIi5KWRuEOsfG/TlsPDlBoSa7V1DsxB8it5FtPX4AQvl1bWVoy+kBEZjeycAJAGMGJBGPVhEBkYFLrHKCFRRnvVzSF3nnDhc/zvfx86jsTJ1SM1y7Bi9GLHSOdmDF+mKiV7eGiJgWdgcmc6BEa1+Kcx3mykVcPxy1URkdH2bChfeb80ksv8dhjjzE4OMjg4CAf//jHufXWW1m6dCkvvvgiv//7v8/ZZ5/NTTfdBMC6det429vexvvf/36++MUvkuc5t912G+9617um7Pg5EuNFhirSaRMqLa2YaGZoLXhw85lIaVHK0FtvUqu01HYlOUqaUoRkSlOrFYwnmjGZkecWKS3aCBq5u48UrqPIesGSSIOUhmSuLvC5xBqB6Cp4y3nPz/TeRCJHRfcY8sIZJEq/4B8vwosSk4Dwxa+H+wr3J01IDSaxSCtcStjft6xV8VGU8H+sFys+ApP3Wa56yzOHbDuVx2caGYnMZY5bqPzkJz/hLW95S3k5FLm+5z3v4Qtf+AJPPPEEf/VXf8WBAwdYvnw5N954I//5P//njhqTv/7rv+a2227j+uuvLw3f/uzP/uy4d76hU1IzfUGhyxe5ycah9uWBTWehi4SLV2zqMGM6q38Pj+9dzngzI0s0taxFX9qkK8lJpWFUZhRGlqJEScuC7jFW97oOoc2jg+wa7SXXiuIY6ztmE6kw3HDpTzHWeT/UYr1JZA4g6hrdcgM8bSGQGn743QsRhRMg1918FNM14VM+flyGSV2UxmpBbWvKt3vO461rn+t8jHTCw1iLME4kiUpNSnnZbZKrfv7J8qHaCpSwx1VDE4mcjhz3Kv/mN78Zaw//Zf7mN7951G0MDg5Om7lbIgwjRc2dvZwkZUuy//fNZ77QeT0w1OhjuNVFq0jQRpKoFv21Bsu7nbtTs57w4shCxloZ/fUG581r1+OEH8G1fXtZ29e27p+LRHESmWu89YKf8u1n1mFHU5da0SBzF+k4WqnKYDbOWTdt5IX71pYjMxAuXSP8ENDD/SxaCaROrEifKhLQIVJCpCWKkkjkUOb0rB8prDdjO/6oxIM71rB/Zz9rz9zJunk7p7zP5Pkb2yf6kcKSSs1A1wRXLdnS3hcvQrpUzgXzhw65vmO/o8NTJHJKeHjPGQwNDSATw9rlezivv32ikAqDkBYjLSJxkQ6dWox2kY5v/uAybnr9Y4f9zoZONeEFjpU+W6O8Rf4UYufmi5/iG09chNqXQurPgbQPqPiun9f+3JOxCy4SOQJzWqgkQlPYjJY5vmTzo3tXsH9vLwjLxk2LSdfqYzJeS6Rhce3oc2qiEIlEZgZtJLQkxghe3LqIl9IFWCOwWmALCb5GxUpXnEpiXa2Vbg/xNAjufvAyEBY1LpHeWRbwBa2+mETR7uqZJFK+8ewFZBu6sBKSmsVkrj5NZ85KPyALQSJMHEoYiRyBOS1U6qpAC01hJLuabqChFLasnTicKZoA5zAr3Y/UsXIsIiUSicwcr128hR8UigPb+509iaqcNAStYQUW9/3Htw4H7l5/qfuPdFfqLgtNgbTWW+C7jYShgtYX1ArAbO7hGzsuB0A1RBkxEeBqVZSvU6kIFassP/japbz5Xz0ST3AikcMwp4VKIjVCGgojy/bflk4orCQRhsOZrFy2YBvaCvbs78MCL2xfzAvWueUKCdec+RL9aYNHdp/BxQt2nFA9hqmcYsUfoKlZkI0isezNe06ZeV/k9MdMCmcI71+CFpimakc7hC3zM8IKV1MiKr3FVpTeJ1WqnimhtiTY51tlEVZA0Z7rYxWYxELdtyL7Ccq4QetBA3W0IUcikcMzp4WKxGJ9NVrLJBRGoo2kZRSZ1BjEYUXCFQu3wsL25R9sP5ODY3WksDy8bSVZWqCk4YfbV/O6FS8dV2h2pKjx5K7lpVfKwt4xLpq/4yiPenXQkzSpy5yaKEhlQW4SHwWb6T2LzHYmCxKAPc0entuzGG0kjUaKbiooJChvA1v4Sllp3a+dACusS98I3H09VX+TEmV9u7AbKmite6ww3tPEtxyXdfiFwErns2IT551iRcWBFsAK/1zW+ack8cMfiRyJOS1UCqvQRlJYRUsrcqPKtI9BsHV8gFXd+495ewJcXloZpLBcsWTrMUVTJkdP+pMm6xbu5IX9iwCoJ/kh9z3ZKEvTJMcV6cmtLGcMJVJ3CK/cSoyVpFJPe/RHCkOXyulTDXpVA4Ult4rcKpomZU/eW+5XJHI4JnTKlrH5NIuk9C8KdGU5uZZo7UIXYcQFRmBb0omHKSYWO+M3e+h1vv7ESp8eVi4cUrYX+xSQMBa84CmjIqK9rfKiL6DFayNh3XXCR1iQ7vWF715s+Y9EOpnjQkWijRMp2kqksCTCoKTx/z92UyQhLEIapLS8ZtnLx9zu3DQJ+1tdHGzVEcKytm8vEzplx3g/PVkLISx1VZQC5UCrCyksA+nEESM+h3suYwUGwQMPXnhcc0oe2Hw2PNUHFpLLD3DN8s0UPt1y/+PnI1qSKy/fwOLaaLlfYejjyaRlpLDUZY4MAgVompSGSRnVtShSIkfFIMitZEF9jP2NbrR1RorNPKUoJEoZhDdUTNICm7jvmtGSwghouQLY4H9SbS+GcF1bhIBoF9sqV8diU4vRIBGlJ0rwQwmpIStth+OtFRVt5E3isBYyUC1RZpoAfnj3xUj/VS66LG99WxxAGIkE5rZQMRKBWwy1dVEKVXF7LawitxIlLLlRyCNU179u2aZjft5EalbU9mOsZE/eS9NHcgC2j8+jsJKuJHezcKxkrMh4btjVwKRSs7A+hkEwWmSkPuJwuEhLECcA333xHPRoghxTqIbggR9eyM2vP7YhZdeveZ5v5utQG7owRvCdp9aR7kyxClRi0b0aY92CsLfZw+rufazt2g3Ac+NLS7GSW1kew8mt4YdrFddWkqPItcLgjomxgl7VZMTWY31K5KhsOThIU7sIqjaCVpHQbKTolkIk7gQjOD+7kw5LkmrXaZMLF/kIA3UsTnwEP/vEYrV3jy0EVllsYp1IARAWqywmdd0+0gooOot0bUX8uC4gP+cnFN9KsKnBSHdnYSpzgAQYYyF1KSXi1yES6WBOCxUpbLmsV0WKxKV+mkXC5tFBupMWmw4MsqBnnLV9e6YUKxM6PSQlcjgu6N5OJgpaNiG3TqR0qZyWSZjQKY0ipeVjwdVwbqo0mSwwVjCh0/J5pbAcLGo0ipQlXSMYv5AbnJV/kSus9r+GymK6DLYmePtrHzvqvk7olDHdrio2GegX+lGppeg1ZYj78nWbeGHvInbU+zmzfx9dKicVTrysrO9jVNcZ1xnSOwH3Jw36VIPcKhrGvRYlDPvzblKhqcmCUe3ciE3HqaXbp6Z/TCRyNCSWc+bt5oFNZ7lCWVy0xGgXkrCFj5z4SlWhnEhJMjfZvKEFtqmceJCAof19CgLDF7xKjduO8F1BxokcUbhJycJUUj1Vp1pw9/XixyZBqPjr8W3N/j4mCdtx9SwiAVO4559Gs+1I5LRgTn8lpLAIP/PCeIEihSlblElgokjZ1+ihK8s52KzxspzP2t62K+yYzsiN4tEdK1i32E0yzv0Z/uFEy1NjK1jbtZu6yKnJnC6VM2HcdgojXepEtIcWGitIpKGucuoqJxWmFEUGQVMnZLKgQcqETnl+/2JGGzWajZSikSBTXbYb3HLpU0c9Lk2TsLfZTWEVzw0tRjzXg677or2a+wFddv4uLluwreNxy1eMsHV8gJ6kWYoUKSwKW0ZBQvTjgBckdZkjfZ4/lQULE9fCvafoBd0exqiEQfvHdqkcjYxpn8gxY6ygNZ4iE4PVElu4hV6U9Sg4EWAE1lpM4n4H0izHWkFL2jI9ZK1AtyTkst2CoyymbrBKYjPTjmpogWxIZ7NfRmVo3x7SRcFlVguM1zdIP0zQuvyQKHzExAovdELRrcVKgZDW+b3E4tpIpIO5LVRc2RuJ1KUwCBEMgyDDRTAKo2gZxXieIYWlaRKafpF8ctdyRg52IaSlMIoJnbK32YNBsKxrmFSYjpRGl2ohhWVU11HKLeLGCnKjGC9SjJVksiDzAqplFC2TeBFVia54sVIYl54aaXUx3Kqz7eA8Jlou2iCERSjDDec9e0yRnpC22XpwgAM/WUQyLkiBVr9F13yI2+9Ds3DRnzAROjC/Nk6vckJFI0lxtx/Iuw95PiUMNeluN1aiEWgECvc+hGPWNEk5RE1bGWtTIseFQbCz0QdN5TzZctkuYpUaobzTbOis8RETC2SJxlr3GbUWpAzpIeWyQcFHSVrIbFuklC1AlVoT7/MW/oShtN8PBbLg6lisr2vpKK4tIzH2kHk/SIv1T2CVZajRx+L6KHuaPcDp6+H0wsiiMu1ddRGORKrMaaGSSI1SBVIYlBcpoRC0msaZ0GmZYkmEYcvofHaN9pZn+/P6x13EJa+Vrc11lbttCkN/0vDiJmFCZ/QkTSQWjSgLTsEJkEQW1FVOb9JCYhkpalBAUaljAScqglgYzWsczGuMtbJSpFy9fPMhIuJo7G328MgTZ2GlJalD+CXUdYutGZdz92d0e7YOsKVrovxxCKmo8DqUF2c57dTOZELnTvj/UHPelPdrmpRmK6Z6IsePQbBlbD5PP7sS0vZ3rTRe0y4dirCIEOWQFpW0e/ESZcjSImgFd7Li08amcK03pWDxs3hc+MVty6YGI3zqp3CGbUG4hNoUK3FOtbj5P37n3X6aip9K4gt3QxrJR1uodB/JXPDwU2u5cN3LPL1hBWjBLa95YtqP7Wxg6GurkAVgoflzCZcMbp/pXYrMQua0UFmQjkHa/oKHn6ZEaLpUTl3mPt3QTe4jHeNFRmEl87oaFEaSSEN32mIgm6CmXEugxFJTBZks6JYtlDCkQpMqFxUI0YHcKlRZg9Iu4q1JTZdskUiX2pksUlwKxUVSCutSRdpI8kLRaimuWb3puEUK4KI4vTlMJOgeg8kEJjPI/ty1XbYkSAG+kG88T9nV7CURhp0TfUhhWVAfK19PwyYM6y6Gi64pO5T2tnqZ26MVI7MdbQVPP7MS0aVdi7Ft13bgL1vtBgvii2ilr1EJKWAhLInSSFHdrsYYQYHfhvVpF+sLb734IbWgBDbxz1OpV8GIivdKO3oy2YtFaH//ShBRlN4rokwBiRCl8emmnz69qizofW7EFePXVMGann2n5FjPBLaSQjv4z8t46O3uhEYbgZKWq5dsnrmdi8wa5rRQ6U2a2ET5hV+gfeK4W7ZKT5Bqg3KmNFI0GS8ymiQoaaipgv6sQZfKqamCRGhSoTtqTELrc2BcZzRESmp0mSJRPloTWn6lsHTLFkYJmioprw+3AdSEr1OxgoOiRnfNtTOf6NyPwWycy858mUc3rCbtaWGNYEH/OK9dvIXH9q5g+9B8VFagEo1ShpGJOsPjXdTSnHpa0Jc1yyJacJGQg7rORKUY90SHQEYix8ozw0vK/xvr6kJsLtu9vHCog2yl7VhIgxAWbQUmd4aCiTIkynUBGStQ3i/JaFk2AwFgfYuxtMjEIJRtzwrSEpsLV0/ixUrpzyIojd86oicaRC6Q/r4G4UVWpR1aux0oLfot7dlCifv/pofPQBjIBzRrrjh9hIpJnXGeNCCMxf7zAkQBWcuiawI+GIVKZI4LldGiRldFpITum27VQltZpmsMglQYUtWiK8sZKWrsa/aUEZUQQenxtRlAKXoCShhyo1z6x7iFO5NFhzGTFMa1LlYe061aTKiMpnFiJaSTlOiMBLWyBovqo8dk9PTwnjOQwnL5pGJYcPOPFi4eOeRMZLBrnObChBV9w4CrnZHCMlGkaCPpzZoMZBP0JQ1SqRnXNXKrSIWmS7V867IqX2cUK5FTxaYnl3dEJ0RiscEF1osI8JEPXJePTIwbLugfJ4Rzk9U+paM7IpqVJ/MhEYHbrg0qQ+MESdmi7O+LcJb5uLtVIyrChtZj2kZy1f0NSNopHx9BKZ1rg/4yQCE6HG0tTrQ8N7L4tKnnMAkInxWWWmCwrjHLiDhaIFIyp4XKtsYAXYkTAMYKupO2+VmouSisQmI7Uin9SRNjJaN5jUS6NFGXbDEvmSjrXBombXe9CFMWwwYBo60oC0IV7nYlLAXOiC4s6jVR0KVaHQW8bpFvi5Ue1aKn+8jGbQ/uWFN6RBz86SBI+MlFkisXvdxxv8FsfMpw6aru/aVL70hR66jfaeiEuipc7Y1wHT57ffFsuM61YcsOH5VI5JRQafkVlopIESANIjFuErJ2YsVqgRUCIUF600ZjXJhDa4k1Aq0MxkikdAni+d0TGCvYPdKL9lWwLijiJiyLQmILiTbaix7avchlCsp2pC5KKikc134s2nUr/jsf0kOl/pnU6FOayYUiXAFCghqXbHhpCeddenoIlYm1LbpfzFz3UwFSCsjdcT1wfux+ijjmtFDZMjIfWnWMkaSJpjvN2aE0uVbkRrKsZ4Sl9YNTPrYmC0hddKAnadKbNOlVDcClPJCuBsUJEO/QiqDmfVByk2GE6xQKwZdEGLTULuRsndip+64YKQyFyWhYSSZ1WZB7rIw/ugBhfYtx4n64dj+7ECpCZUKnvDiykN6secQ8dpfKqcnCF/9qpKiVUZKWSaj2F4wVtY4IShQpkVNNtmKM5vaecrEWWvjpwy4VI1ODlRZTCEQusVZhlERkBlkzZWePtW2/FV1I+rrH6MlaKGlY27eXmiz47vhZgHKCAMrAh2wJjAArpEvVhI4fKFuRXYrIX1eZbegiIl7d+O4fGwpxrUBotyEx+evfEelpXw5ppGTJOFjBQPexuWbPBW655EnuSi4sa42C+ETALVc8PtO7F5klzGmhMjzShci7AJDKcFDWMUZgtPv1aBXJ4YWKKsqalP6kPYcGKNM/k4VEKjRaSJrCHbamTtxCb12rcaCwbv6QMzZLGNM1DuZ1RosahZEM1saPe8EvpwGE30xfgNc0CY/sWoHyP8579/XS09c4olAJzx1y9ZPTTaGdOhDTPJFXih/tWkVvV5Om6G5HL4BgZy+UcZb5iaWZK8i9ADCuHVkrl48J3j7tzh7Byv79LO8a6Xg+ISxSGpcm0tL5rIQ24hA5CSIkONkK0TZ5q0RDrPSdR1W/ldRgpXDRnDIqQ8drK79pgnaCKERS/IRmm1luPOu5aTnGs423X/D0TO9CZJYzp4WKLiTS56V1oZyrtf+CC2kp9OEXWImlJnP6kwaDyRipcIv1znweuVX+Ol36guzJewFKJ1pjBU2TlAKlJgsUrssn+CmM6hotk5AbRUMnJELTnbWOeeDYtzeeV4qupGy9rHQVCMv6bWsY39GLTQyyu+CMJfvpzY5+xmWsdDU1vj4HIDedbrqRyCvBT3avLLvidm8fcE6w3kG2o2DWCKwRSGnJ0oI8SzBNicj9om98wauy2MknAnZqwb28f4Rtw/MoCtluUQ4W+gHfphy+c9ba4L9YtvsjLSjfUKcr14PzLzLWdw1Z1y1kKtv2/wbtIkzFt0VUnj8SeZUyp4VKlWroVkhXT9IqFBsOLuTsvj2HfVwqNKkoGNbdjJuM/Xl3aWEf2hulsIwUXR2PCwIlraRFNLLtjuuH8I0VGYkwZN4+/1iHHQLUajnNpwcQGjcRVjqPBquss9lWMLazx/2IWVf4d6w+BMHBV3oHWgAtxFEeFYmcGE/sW85YK6XQiosX72AgnShvy5Tm5S0Ly5MMwnC/oCuEiyC6acgKnWlsCirRmFRhhSxbiWWmSTMnvIP4CKZsmw/MZ35tvGOQ59l9e9i8dxBdSIzxTyi9UPFGbOVf2Bnp24l1JaziIx9Ii9ESmfvWZSMQPlXlxI+rbXEFtXQU37rBhk7oCC06U0Na8OCONcc1k+xkmdAp9z1/bikQ0QJy0fawSSy9S0Z50xkvvmL7FHl1MqeFilQuxOtr8bG27dOEsGgt2Tvec1ihklvF/qKbUV1j3GQdbqmThclkXBdR+6xtQqeH1HFIYcikdu60OsEocVxC5Y0rNvLNZ1+D8sWExtttmy7LkrV7UL4Fc2jzAqBiWnUEgkAJVG3xg2leJDLd9GZNtu8ZQI8mjA+mHULlksHtvPzSIheFCF0yocMH/NouXCeOgaKZ0AyW+JmBxKeEEkOSutZ7YwTWtKMkQhkOjtVp6uSQieNFrtCFezLnBm2xGFdnopw3C9BerMtBg7Y9+6dMC/malNANFL5O0rpOIIWbr+VvExr3uoKVvrLgW5PLFmXcfffv7oNl0/WOOL7x7AXuucpj7XbcaIHNJV0vZa59OHd/qmndPCTj9nn/JX1wxvTuUyQymTktVFSqEcq1JRooK/GFcD9iWVZw5sDhLcmMlUzojInD3uPYmSqsnHpflf3NbpZ1D3e0JB+J+7acTd5KMH46tMtTw8JLdyGFpZ4UrJu3E3AOt92pK9hNpT7CVh1udo8pZ+2E6cw1VUSREjllrO3dywtiMfgI5WSEdkIE1Vmz0WEzb0BYiW1AoQwq1UjlWoqrIsVaQVEoJ1a8GZxQrhYl8MzwEhpF4iZ6h/tJF+kQiUGoivAPeiEMPpyMdf4nYWqyTaxrgZa0oxG4y9ZHX4IYs9UUUbjOP5etfp1PUbBz0YKD7H1iUSWl7F5gkgtky0V7ZOH/8nY3krAgcujdqPjW6GvK49B74b5XNOoTeXUwp4WKlO5sx+B/6AQoZVi31C3i9SRnYTY2o/vYo1okXeaokZTvbVvLRMPb0R+oI3KByAVLLttZ/kZNHiIITgwF0XIshC6lUGMz1byfSORUYLSr33p088qy2BX8wuy7YtzEG/+Jr04eDvVnFigEJleHeJwo5dyhCyOR0hfUJq7gQ/oIzIYDC8mUZqRRoygURa7a9S3WNSi74YB+8KEV4I3fOpgsosp/K+LGiySbi7Y4UZQTnl3K1guiIIJ8hMalnyqbM6Kd3p5Grlz0MnenC93uS9qt0IbSN6ZaMFwt8gXIRizZsN9HC/tWdk971Odk+PY3X8M5P7PptHLzfTUyp4VKQAjLxWe4RVwKe9hOn5mgS+WHFQLrh1YzfLDb+ZSMpVDIcj7IqvN2kirNOf27TzjS0Z9MsKbu0l47WgPsbvUB7YnGqdQdc5IikVOKT+HYAxnV8o6yCwa/IPuzepELZN5e+F03jq8d0QJTSKTyAsVPSxbCkkiDSF0EpShUxwI/1sjQWU7qXWp1KLj327RWumLa3Pup+G4iJhfnBhfZvpxzztiFEJatBwYY2+27lYxAFnjxE1qcO79jQjrXW4Jtf3ClLVNLncdINBXf3ngeb107vd0/JqwCFXdfk7r9qL5sYV0toJGifD/CoRHGvS9VATpT3H3/a+jd4nZuyZaC0dfWoGeGdypyUsxpoaILyRXLnUCZ6cjJiTA2UUOPZOhgbxl+pLRgVd++46pnmYqaLFiR7iP3M3t6koy6zBktajRN2jHRORI51Vy++mUe3rAaMZ5UBAquoLQjxeNTuKbdlm8lrnsmsX4qsZ/NIywicdETYwXGp3KMkS6l4+vWrBHOBC7RZImmnhSMNiHPfV1aEE7S+bQYYbFGtU3lwqCgkIIKwwtHU3Yc7OONKzayb6KbMdvTjj4YgcAyePZ+lvWNlCcDUhge27SyHUmpuM8iwCbGRWO82DGJOx5WWlp769w5fhEAA4NjvH75Syf/xlQiU7YymkCHemIFSrqokPUixSh3f2FAtnxaSOON9maWbFjQM6RBCHRNUlNHT4lHZjdzWqhctmIbC7Nja/WdjZRNNqW3givQm65WxL15D09NrGR1tod5aoJUaJomJZdu6vGYzshkEU3cIqeMB3esYf+evnaBaC6duLDtolTw6YYy5dCOJghfcGoyfwavgNSnYoTzDtKFQhftQnhrceZhgEzaPikWMEZirSCTGiGsL7oVZX2IygxpVmBTaBrhopzg9nXy91IAhWB0az937rykFBftlmPXqdRfb5Su0IHsrE38aMOazjoYZVyNjDLYloLCIgrv7ZLgnt8IxKj72R7vztg0NsiLuxeydGCECweGTug9uuySjTz25Nq2SAmFv8iKZ69TfG2HXfePLGDkPM3q89xzn90989HsotcysaBdM9gXf9/mPHNaqMxPJ4B0pnfjuPnRrlXs2d3vwstQhlzPPnuonF7cmxzZUv9I1GTOitoBl9bBMmZq5W0Nk5bzjwD2t7qZlzaO2dslMjPkVvKtpy5EKFMuEklWzCoTsMf2rmDbxoWQGWRdI6V13TQtiRx3LbtWWWxSqXso23pxra8+SoIvIDfKR0TwXTD+NF8o4zpVhMXk0i3sgEhN2a5vLZhcYHwroFSuG0ebSYXvFWt8o13kJUm06/4R1u0TtFM3otrxY92AwkK1W5CF76IR4pCMUWBhNuZESiHKdEtpKuebAgiDDasnNC6TBEBrpMYzraVYK2j0Hv9P+Z1PXdSuAcKn5XxBMYlxr9lKrAGLQAuLVMKfUPljX7j014mKpFOBUWDStgiOUeO5z5wWKnMVbQS2JcsQN/6H+qWhhSw582BH6+bJYKxk1GS82FgEQK9yqaSmceKuS+VksjjmbqTIzKGE5apzX+LHz55JcEvNJxR3/fRCunqbvGXVhpN+jjufvJgbL3r6hCNsqdKQhm4WNxDQ5rLdJeJTJjZo4uC6Kl3KQfjCzVAYbyWYmq9X8cW2MnfbDSIFW/H4sLixGF5g2EK6yIqRzt8Eg5GSiVbKHttNrr24UcbVphQSayU6kU6ohFk+mnb9RuJfjAXbksjCvT6bBpHiX791aRKh4aWfLqPn0lYZVbn7hXWYloKW7BAlgC/qpbSRLwfzVb6i5cBDLTBNVxy/a28/94yeC7h0lh5PXDQoNVx+zuZDHHkBaLZbrGz1N8B3TYbi2rYTnR/hAaXnC5kl3Vrjnu5zuX7N88f/oTkVCFumqAA2f3sN3Te3ZlXtYuT4iEJlBnjN4m0Ui3aUlx/auppWM+WSlVvpTxsnvX2NZE/ey6h2kZTQOh2s/4FKvtz9+8LIIoabdS4cHIpdQLMQiWVe2mgvGtpN8bW5pTGecd+Ws3nLqg08sW85Wzcspmf5weMy4vr2xvOQ2aG5fIPgmz+4zD1tzSDqmrdf+NSU28ikRmS6ksoU7XQIlJOAXRrDPUYEF9rSAM3XpXgRY+oWUgOFi8qUJmvCucOa8DyVzhQpjYuiFHR001gt3AgMm9JqKV+7ItuLsY9waJlQVoclBiuEO5kQTtRIL0i0TbA+ClQSIiPKe6LkAtWQPP3oGp5SqytGcnQ+BkoxEFqknddKxXnX0p7EHISFcWkZW0gKqRDSOHFWSETLFQcXVvHAtrWMj9ewIdVl3Wsrj124rlKjUnXjBdEu7g0BKF/bEuYqzRaued2zrP/h+dR3twulQwNBZG4Shco0s6fVw0PPrgUjSPuaU4bma7KgVrn8+pWuIC6V+qS6b3qSJk2TUBjFqK1hrKRLtViYjpIKTcOk7M2nLn9vGYU2kkd2nsGVS1+OqaBZwp0PX+oWjKRtPFamTLDlAtoYz/jGcxdgWgphYezlPh5Uzsn03s3nMLG729V2ZIbXnLnlkLPLIldIafnO8+djcumeS4At3P9De6zNJXc+eTEIi6pp6vWcLHGflVaRuELUlmpPN7Zwxtm7OGveHu5/ZB3ZXuW7SmwZJRGFKEVMWCTLdSWxpD05Qlpa1FGjsl2AqzSJAqsMuUgg93N+lEFYgRG+4ydELrXACokRBomEULsS9tX4GhoJmqT0VcF7n4RjEhCJm8GD9hEJg3sBiXGTnpVPEWnnSWKFwKYWk5mK4y1lLQva1cGIxKBSgwZfcIu/H+0ITBBEFedca130yAZLfx9VeOqlFci0HSUL3UYiccMSO+pvKtt0bdreENKXqXSMtfaCxaS2w/xyphlIJzDdhqJb+Eje1N49J8ID29Yi753P8LqCW658fFq2GTk6UahMM8YK94MJlV/bI3OyoiC3klQYDhZ1P7lZOjEk81KguDPJhNyqKbexbmAnOrQtx+Kz2UVwRxW2LKhEOZEiE1OOjDDWmZZZZRFacmDzAHe9fJlbgAGrBEJYHtuykivXbObHL63GjPoar5pG1jRCgEyciaI7M/chdONEhRWUC6pNDEUhKYqMvJXQ29vg+rOdMK8aIJYCXLpFQ1ifUgm1m5pS1FgxqS7DuO4+Id1x0D2u4NRogZSCNCtIlWZMWArpxIX16aByGq/FLdoGZ7CmRVnuUWJdjYYwgI9ElFOTw7EXIYLgC3+VwaZOgJQRCYtLufj0UNg2UC7s5Tb9+yqkxQQ/Fy2wUmLCc6YGqyrbLoUCHX4s7nW7adE2pI185MdqV6cThJbwnjLGhg1V9kngzPGUa/XWma/1EdJ53UzuUPIRIDWLhApQdmaV/jsnycN7zqDx9SUuS68tA08m3Kku4ZbLnzj5jUeOShQqpwphyUcy7tl06nO3SlgMwi0GAlpGgi+Y1UjGTYYiTEyeelBjbFWefdz58KWQmlJAIJy5oTWqPPMW3kdESguFX+AqnWNWWFdvLi0iaxuX/WTTahdJCJbtvogUqIiE9gLcTrn4BTA11Lpy3ry6szamjAgeRuwKg3eYpR0VsL4exdc/dERXrMCMV36mEusM2PziLPxnNk21s8wH34rsoiTC+7CUc3ZsRQSV0QkfkfDdSLLlho6S2HZxqTdqk0l7BIVRblEPwqDDGA1R1tmEeg+b2NLkjUKCtbzl4meoqaI8SQh866kLfUTHlkIxpHmAdtu0du+Fez0uAlZ2U6n24612Ux6F8t9zYbFSutcXIipe+IRjaqGM5llb2Y/wOivRr0TOLqEitEBOYwbbWsH4Mssb39oWJt/deDb3/tMV6LrFpjB4yW6uXPTy9D1ppCQKlWlmcW2US9dt5vHnVkFiSZJT38M/OV2k/WlOjaKcX+RmO4sp7x+ZHdz58KWIZrsTTCiwKWXKRwq3aBjrm0Z9JEUp485+RTuiUtZASFzKJzVukZXGnU1r6SIChVcL2qVARPXMuKwtEUiNOzPH1SYIaWm1Er7z4rnH1XkULNltS5RFoVaAySymSzujtAlZNr+UEaRSuPhjIS1pqp25WzgG0qBbiR+nQdsJNhTx+iiH8Au1sS7qUpqu+eNl8QGRQniBKLyHCMhaQZK4WUJoianWdAThFdIiAImL4lhFu+DWUqaJpDdb7Ji/hYCWFxGT0y2hlsdHuJA+ynW4KKg/bqG2Jrz2MFZAGCfGQmRGTjKmE96/Be/tYoUXrVWxYuHApgHWi9Vcu3TzMX8WTiVvu6YzLXOyv3mvWbQVbtrasZ00Kyi6vbjWsP/RRTx6heHyKRzEIydHFCqngERqSPwk11fYbEhiD2sUN9WXddPYILlWNHXCWf17YiHtDHHn4xe7xSs4r4LrNsklWiTI1H+mlHa1ImEqsBUUhXQLqvULa2irDWfWlbSBEJAkGi0s1iY+ouLvZoRPkfi0SfXjYkAVgBBYJbEkaGmx3UdPW979/AXYXTWSlvDTgQUyt97IzD+3tB1iAe2vC+kXP7XXhk4fQgrGkiUaCtC5woboiy8UtarSTeRfl8mdRwm+6LQs4jVePAlR+rdUE0Q28ZEaXG3L5ALN/mUHef2KlwD4wbYzGdnVC0p0dO6Ui7z3i/nOYxdw4+VPHZJuFYV/nN8v11kEyNB+HUI17j7W0hkNqQ5QFE5YSmnKKJQrJHYixIrwebI+4CRKsSKkjxqVB6GSM7Ptz4hzre08HjPJdJ+MTbW9olCoRkVEA/seXMo9YmkZFTz7rRsP8dCJHD9RqEwTB/IuHnz4PADXHVHTCGkZHa/xk90rZ31IUIjp/WJHDs83X1hH4WtDrr7wRQaz8XKRtqFOoOpYWtYtuPcp1Bgg/AJipPcVsUgMRrVrSYTA1zgIrHVFlFrLMs0jfK0JFVFTLnI+dSJy4SfoCkxikTllt4zJTBmpe+bAEja9tNhZz+eyncLxaQ+Ds0EJk3fL1mTl7uNSQu36ERG6SaRLX1lr2ykt/zq0kiiZk4W5OGG9D9EYXyRbYgTk7g6ikL71mPK1hxbo4JXitumEi21JTCEho7PLRVRWKuCHO1Y7kVKxwhfWP3c5VpmOaImpPF5b0W51ntTRhHA1RM6ozraFT7h5clEsXsBMMqsLkZX2fuBEajU1NsU2rfViRoe0mX9/LRx4aT53vzAfjGD5JUNcMrid0xlr2uklW0nzVWt3Xrh3LdkNz8fW6JMkCpXpRLofN9VTcNmql3n85TOQ0qJmWf62SiYLltQPxkjKK8hN5zzDt148j3ws46GnzyoLPt0ibduLZDllNxRKulZeIeioIwipD6WMEyFWoEuvDXzI3kVLjJClS2u52HqR0JFmsCHyIVAtv2Z6QWETJzIwAjmccveDl7k6hu6CpDd3pmkthc19O3EooZC4fL6PnghD2xq/dKutZB40LuKRmPZgwKqbrY9q5FohhSXNCppp4gRWcK4Vwgk5646pIIgf/xoSLwZ8x48sBLKFE2GJEwzCiyvZEuiGoqXStogI6R5gZKiPb+y8+NB6FW80R7mImXZqTlm+9fQF5SDE8nGJP2jGb6YipmyYTyRoF/xOItTwhPol6yMe4XNjqumusL/+/x0nLf7zGDqFnMeLaj8mHEfc59IgEMay7adLqF1ScF7/rkN37jThxrOfhbNnei9eHUShMk1IYbB1zS2XPAnAUKOvvM1Y0S52nSXsafVQeIfOWEQ7Q1TqL6oiBWifEYezer+YllGUqpcGPtLi/6Sw6NRCy21fFGBxbbcGg1ThjNqvT2EzZerDpT+stFglMCnul0JYV0uSeav3AleIq1xURgjXoVPWh6TGGW8ZUZ6B20nRgVDEinSpCOEjCNZHlayxpflZ2eniUxfgFl9tBEhIEkNTWV9kKhBhjI8XGkEI4X1bbGLbqbZKRMumbXEVIhYC91pFS6KlcoXJ/niXNRwChP/XFhJalSgZtFuRK9GO6vtdDik0lfc2vP+V9FE51Tk8PkRrqldL5zMjZbuGKRCmRutq4a2gfM6OaEtlF60frmhVO1JllS1HGgSnXev3v6aixUFkepi6BeQwfPKTn+Sqq66ir6+PxYsX8/M///M891xnIV2j0eBDH/oQCxYsoLe3l1tvvZWdO3d23GfLli3ccsstdHd3s3jxYn7v936PopjbH+r+pFmKlMkcGO3mqX2nbva5QZR/x0oQTQtq49EzZQawRpZhfVFddMKCURUofnEPtSmHbMtPAQ6TgIXvCApdJlUnU5tLH5kxHYtRWTdhfTTCF+TaxIuT1P07+Qw+GH+JmnGLdDUqI3DbSQw283+J9xUp2uHxskPWVlba0rTVX1cWvbpjYIp2CssEwS1Nmb4hl37BpF1cXAnJl6mVkOKqLNgmuK4Gwk2+tbks7g03K+uKlTNNkmnSWuFqikLxrhHtVB4QLP4ppLMyCM9d9ckJEY9wrEOreFFxswWXlmtJV3zbkthcYrX/88dSSkMiDanSZElxiHCp+rIoZUhSTZa1/9JUo5RFSOOKbcNnKgjH1KAyjaoXyK4CUdeILlebl1tZ/h3P71MkUuW4Iirf/e53+dCHPsRVV11FURR85CMf4cYbb+SnP/0pPT3OSOx3fud3uPPOO/nqV7/KvHnzuO2223jnO9/JD37wAwC01txyyy0sXbqUBx98kB07dvBv/+2/JU1T/st/+S/T/wqnkQmdYhD0qKPP4VlaPwgrt/LMriUs7h89ZbMwcivZMLKIRBhqSXHMhVuD2fgp2Z/IsSGkKRe7Mu0hcK2mQazYyuJWPu7QegOLC+VL2V4IhHCiokwbVA3JjJsyXKZ+gkAKNRThOl9Y6hZbv8ibkLLx3SKCsnA8SbRLx2iJLiS2JXyUwSmtdrTA77TfR8C331L6XpQpodBi6ztg2uZsAmM1xnfVFV6oCeU7awKJxWJKkSO0aG9T0PZZAVC+zT/3KSL8fkjroinWdSzp0t3VCQYnDF0kS6rQkUX5Oss6ElXdnn+9Wri2aj+0EVMpGi47fASi5dJwJrXYmnUt58JiFe1BiKH42PvIGC0ocuU/C06sKJ+KVokvCK5McBbS7X+S6I52Y2sF2hqUkmjt05D4yI73XElS9z5oKTDKRXNe2LmIjWqB60jTkmtXbTqm3865zpjOyE2nX1V/2phVEfW5hrD2xM2Pd+/ezeLFi/nud7/LG9/4RoaHh1m0aBFf+cpX+MVf/EUAnn32WdatW8f69eu55ppr+MY3vsHP/uzPsn37dpYsWQLAF7/4Rf7Df/gP7N69myzLjvq8IyMjzJs3j/fd/0tkva/MUMKRosb3nj4XtOANlzx32M6aV5rcSjYeXIjEHpdQicw833juAucREs62vT8J0I6kVM62hbKuaFYd+pWVwqISd6ZcFBJdKDcHJq/UPUhcrUfw84AyQlFGCpRte4P4P9mUfnKxbdd1JKY0hhPSkvq2Xdc5ImhMZOgJ1VFTEopdRVMimxJTM9h6JQrjF26hhW/lNX62DpTureFYCRB1TVdPkyzRNPOEVjNFV+bniMpTW4uPYLQnHNtKJKHEgGxKZNPdx6ROMIjcF04K30qdWWxqy9bvJNXl8Q8Lc3Msg4Zyr6nw0aDEP876aEjRfvKytjVEffzxFl6ohONi6gZqmt6BiSnHJPxg+5kc2NPr2o1TU0ZJksR1IVpf11MUCh2Ekq9fSbOCWlqQetEJwRjOHx4jaeYJzUbqXJCVIakV1GpF+boLP8la+k4jKd2U6teu2DKtQqVpEowVs66+7q4fXUZtV6dQufzGZ+LJoac1mvMXb/5bhoeH6e/vP6bHnFSNyvDwMACDg4MAPPzww+R5zg033FDe5/zzz2fVqlWlUFm/fj0XX3xxKVIAbrrpJj74wQ/y9NNPc/nllx/yPM1mk2azLQxGRqYYsHWK+d4z57qzh7rm+y+czdvXPf2K78OROKd/90zvQuQ4sdUzYW8QVu2+qbZ/htSPG1onfPcP5eoWzo7D4izK7VKmHSxusbdhAHNZk+DTI2F2y6T0kskMt1z1eHn5QN7F+o1nUu9qURQK41MwRSFZ0D/G5Qu2uUnK2wdduiJ081TqLUzmIwZlysU6zxEfhSgjCpM7nEIEJzGoVJMoQ6IMjZZ/XcqiEo1U3l3XFw5jBRogV35OEi5qktiODhvXoowbhihod2H5VmXZagtIY42r2wgBEr+wr1y0nwsHhvjB9jMZPtDtBjM2FaJZmQvkIy0hgoTfR4Qv3tWutqhsQfbHyPpjEd7nCZ0eslDX0gKZOaExOQIXPjtSOI8nKQXG2LILTE6K1oHvWLd0tGSH9GKoFxLCony9ThAmZXBOWORxFBkYBKNFVppTHm5Oz9O7l9JsJbx+1UuzS6yY8HmJTBcnLFSMMfz2b/82r3/967nooosAGBoaIssyBgYGOu67ZMkShoaGyvtURUq4Pdw2FZ/85Cf5+Mc/fqK7Oi2kXTkIe1zmVlVy/6Wbbnv6VJjDVtYbROl4qbyxVGT2kNVzWmUaYXK9iOis9/BapryXn0EjfLrHCt+VIehISVgoIxClECpwKQN/0mcrEY0yNePrK9rP5T5Puxq9jBcu6hkWKAt013PesGIj4KKPi7sPsq+/m4k93ZVunnbNhQ0priBivPMrgraFfjgO5UBAn3Pw0aWwqAph6aq12i61iUZJgzayTAkZLV3HUyjvCF/D8G9iIRe+XqWSogn7GxptNAhfWOwue7t9I9BKgrSMtTL2tHowViBTg/ULN4VyE6SL9nta1sJYENaWNS0hTReW6NK5t1JbMnawzk/EyvK4B65c9DIPmdXsH+n2Bn9tMVsVKu331lUYG9/ybS0URpbiI0TJCiPLWigBZZt82H7YrquB8c/ji3otMFZkdKn8qL9DuVE8uPEsTB6mX4uyfqqj/dx/Tp/sWcZrF2857PaqjQOTkcKyuDZ6xP05XlyUUDmTxJDRi/U5J8UJC5UPfehDPPXUU3z/+9+fzv2Zkg9/+MPccccd5eWRkRFWrlx5yp+3yo1nP3tCj8utpDCK4bxOyyQs6xp+xWbpNHXCmM5c/YosZtdZR4Qbznyeu19Yh24knXUp1TPsMm3TFjPVjhdMWNTdPJdAWXgbFvvqmXJIfUBbEITUiAHZl2Mmkvbz+802dcLDz6+BpkT0Fh0RnEJLDuRdDKQTPL5zBaMb57nCWW9aFrxIwssqazi082ghnSzC2vvq7u/NzIJoqdxFCkstLVCV16iNc33NEk0hLc3J4wHC4fYhHKEsNndCRLZ8pEWJUrDYsL8h4hNs9XHCorr07h6ax+5d/c4J2KfSTGpcGs5PQrYhGmY7j0t4L7wOLd+njqCC95cR/riHDkMpLIloW/wHF2LAv1fCuRcfJkIRDN+MkVjrRYY0qKoQkU7lCeHmSZXpISPRfh+QhlS1HwNgjeSJ7cuPKfohhaHe1aJB5vx2tK/hcU/QeWcvvo7EQ8+tRUwEVU75byiyvuWKxw/72GNh+0Q/+xpOmBorWLFyLztGF5MeFOgM15EW56edFCckVG677Ta+/vWv88ADD3DGGWeU1y9dupRWq8WBAwc6oio7d+5k6dKl5X1+9KMfdWwvdAWF+0ymVqtRq9WmvG22M1bU2DnRR1eSY6zgYF5/xXKVidT04HLCsQV5dmJaqmzx7WhNDsKlPKWnvZKVKxu+vsBnCCa/x9UUjk81lP4s9tDbsSB6C246/xm+8eNLygXNYtkyPh+J5bwzd/Dci8sRwnYIlYnRGk/sWsYb/dl9SGuE+gYRBtrh99VP9hVhem9YpKv+JmG/KsZxwWE1SVzRZ1YZUdGV5khhaWpFq8iwQC3RSGnK7iCtBSYMWCyPdYgueBHkUy9Y/EgC4bubQNdsObenoxDYtl+HrBcuLeWHNlp/Nm+9pb9NLWS+NieX0JSV996lfqwR7aavSopPaAE5WBQ2NYwf6OLhA2tAWlRmSLOiLGpOfMHssSB98WyIkEjR9n8KdTcY6Tp/JD7y4iIcIRITRIkM96+gfKTlWEiF4doVm/juS2e5NKEEE+IwvpZL1dudij3ZketeuvobtOqHLnVVIXcyPPrsGgYeS0katjQ5XPTLxz7357G9K9zHx4su41vuQzdb23bg0McmSpNKw/LeYRZmYyf/Yo6RreMD7J7oOeT6s+btOSX1m8clVKy13H777fzjP/4j999/P2eeeWbH7VdccQVpmnLPPfdw6623AvDcc8+xZcsWrr32WgCuvfZa/uiP/ohdu3axePFiAL797W/T39/PBRdcMB2vaVaRSk1XktOfNhhIJ4B2lAWgpoppT8kYBLlRSGFIpI7TkGcxtqhETbSgnZugvXhPOpsOHTPgoyahI0eIdlQmtNKG+1p3Ripo111MJVbeev4zbvZMyy+uyi2uTz6/0hXiChCpWwC1L5o0ucS2VNke7fY9pDH8xTBvR1lM4m4WBe00lS+kBTA1yBZMIAQ0RmqlcBPCtc/Wajm1xLfaCou2blGvJQWp1EDGOPgfek09dYuatYKWFWgLVlaKjIU/jsoVqlolSrM7FwHxAkO5O7vCYtodWoVoe58Y6O5tcumS7QykE3xv21pGR+vt91Piat1SXU55DqLM+u4mnQhvPtd+y8MhLVMg0ou9xJb1IlLpMtUT6kLKII1P+VSjI6GuqbxNmTLVoybVqgTBaaEsmNWVSc2gEUKCMv4jJw45OZLy+Aaf9na7BU8bWS7i1kJ/d4MrFm495u1ct/qFY77vsbCn1cP20XmAExeiIbEJmASO1+lh/dBq8vsXeudnkLlzfk5zS9JwYyZMgvtX0XkyA0x0CUZr8PIFg1x97kuvmFh5fOMZ9D8+KXhgYePNcNkpmHV0XELlQx/6EF/5ylf453/+Z/r6+sqaknnz5tHV1eU6cd73Pu644w4GBwfp7+/n9ttv59prr+Waa64B4MYbb+SCCy7g137t1/jUpz7F0NAQH/3oR/nQhz40Z6MmR6JHtejpbit+g6BlEiZ0Sksr5mcT056SaeqE4bxOd+KeN50lHUqRQ+meP8HEwbrL6gRPjfJUmrZQCUZsUEZQXN2GcYum/xEva1t8bj9ERcogTJnjn6SALB0pATvYQu6stQ3ggg27FT4MLylCkYs3dNNasqfVw8RE1q69qPywWulEiq0ZXyzq6kEQPr3j25OFEdxw5vMYBHf/9IKyGNQaykJf5VMSqdJuOLSwpFKTSY1WBUoaV58SikS9yJFKY+tgtXEOr7pyDKSLdNgUbMu5wgU7/SpO93lxkFg3siCYp1kY3dXDlu75DAxOMK+r4Y6HFtjEFd9icB1ZIY0UIjNV/xqM99qpPHHl/9Yb6snUlMXG2KqnjC0HNlor2qUdFRGiDeWsqCRxVRRpotvTocszfJ/aqfj1GC9SrHbzAYxQFLjthUiFlW6byu9HAuxs9HFG94GjnpzVZMHrlm064n1mihf3L2T4iQWAEyb1lkDXwQpRCpXsGN3Ii3sXus9bqfFD1FRQ1JzZoi3FCocIlXBe0/tMjR+JM5k3v1OovGbJ1mNaX3IruW/jORWDwHYkR9AZJRPCIsYSTNZ+fqH9iccp4riEyhe+8AUA3vzmN3dc/+Uvf5n3vve9AHzmM59BSsmtt95Ks9nkpptu4vOf/3x5X6UUX//61/ngBz/ItddeS09PD+95z3v4xCc+cXKvZA7RlzToUS0O5F2nJCUjhSWTOhbQzgHesmoD33juAij8O+XFhqgIFavaEZHgxwGVmT/gBswFV9iqPXpg8oIXBFHqUxCFLFNHT+1fxvLFB9ixd7FvwfUGcmGIX2i3pR2dsdKStxIe27aCYne97aSKX0NDu23mxYB2fithqFt1b6sdEwPzxxgdr2G0QjcUJldI5czLlDSlSFE+dBOKFhNlaBWuKLSRJ2UhqZTWnfVL4QJOfoUQiSHJCoyRzv5f++hKKtrvSVh7fBoNK5BSY5WbQVD6xNh2qvWSwe3sH++iyFXbmdYKF4Wp1iSVgpQOESkMnYuTbf9fCNrW9lq6WmgrUEqglOmwzIdKFMVaUmUAFxXRhUKIdhGyFBZtZJl+CAKlnTqT7c6wing2xg39MVKUhc5Suv1Q0oI0vLRvsOzikcLOSTuFwa5x9gwOoMYkJgOZgWmBzESZ4hzaM4+RY0iDFF1tASJzJ3xkywse76JcFnL7z0K4bP3JSsgI9/y0RmFr5WdEWNj/r/bS1XV0oTJW1Fjwz93omqurMYnw87jc8xXBA8g/X5fA1d/455YFHGNm74Q47tTP0ajX63zuc5/jc5/73GHvs3r1au66667jeeqTYl+rm5G8zpqefa/Yc05FIjXd0kU5xk1WpoKmm5osqGXRbXauYMNZffnbLzq6G4QXKe733aUh8ItUe+2qLPWmsviFzZj2D1tHN40XOxYDheTpfcvYtmWBizR0GXfWnmmktGgbxIyg9CGpeLKYiYTmaOrSET05te6cxr466kDijMrqxrmWSieqbCGwuZ/e671F5ML2D7vEcs2yzXx3y1loaZ1HiveIcfN9/MIsrDczM+TGkmtVpgmMkdiK0ZmRAqOd1X8p7ASoxFCv5xgjafgaAazvmtIuFWNDW3OY+9OS6GRS1ANcZKMiFMsUiU8Rtac0h/dGtNN3hg5XYFs18QupH/BGcf6vcI60WDCZQHgrKmM6dywINaUMxmiKEBkppDO+TTTaSPAdU8bIjk4f4+tSOhySw+5Z97qd2A5FuU55CWnK1JEUlk37BtFaIqXhjFVHj67MNs7p383wqjq7XnJRFVOAVAKZWGTuBG32fBe7lvfR33c0oWJLF2YrnTgwCqSm/RsAh0RSgM7Wdk8paqwTj49vOYOnEvfjoYt2avYmn+IN1GTB7iugd7NwaayQZhJ0CqIglPy/HQ7Olg6jwOnktJ71M6YzXhxeyL6xbqxlRoWKFIZ5yQTz1AR78t6yRmUy1Qr+hbWxOfcljhw/NvyA+EXTCosQlYhFKH6FdkGpauf7OwomQ6rHLyRhW6VICQgvUkordCdctr28oO0Eq5xfSei4cUZzxgcB/D4rW863AVyXjhYsXjTClYte5rG+FWxvLXIGav62gYExEmVo5gkHX+53r7lmQFpuPOfZKT/zXbXcpSlyhZBu+GITaBVuIGGiTFn8mWtJq0goCuUW5szSlebODC8stsHQLhjp+cdKaUjStsgPRcNmLEG0lD+2TqiYlsQkig4zOm9YN7Svn8XdB1laP+jen0pr9lSE+pxQcEvi5yTZ9ntqLS6SVfHamex5U3rHGIGxk4SFbX92dOqKsK3/LFjjRF2hZUeUV1QiJmFb4Xpb6VALXr7VOUzlPkFHW7StFOluGZs/4yeQk2mahEd2regoXq0WChsrODDSXZ4MhJSlu6PleCp0Teo/Fj5yagQIJbAhejqZyvNVC9SDaChFBO627se73P00JI3KBs/v3GyXynnttc/x1I51hwRjp3p+K9vPXYoWBZtfXsjynuFpbxg5bYXKmM54Yvcy9u/tw7YkXYOnJnpxrBRWMVrU0FYybg7vvrtrvD3McH42Hrt1TjMe3buCkYl6edlaAS3Z9uwQFqRod/BIH7Uo0zW2o15lSsKZt3U/ekgfsYCOMzORGj+1V7Sfq5JeEGERxxcNCrwpnGnXw3ix02E+ZwQHJ2r8YPuZLrqRWmzh0kXWKlpFwqWLnUvperUaawWZTztMJqQdRFqQprpskQ2phbxQfnxA+7rQheIiAK5WxSShGDMUj1LWmajUlDUaidLYtN3NFDpVxv2cJHIvBDWIlsAm0g0krLrmGij21nlSLmdb/xi6kE7MKbDSRz+ELXuQbUjnCfyptW2ngIzwyshdLkcIhPfQ1w+5qcaiLTrcC8T4WqXgPmwBm7njqBLjun0q5t6FkShjXde7sCjAVP1S/D46TW2xHeY+/vNs2/cPNQ5VMS1odxltOTAw64QKQKtIGNvW144chvdDUEYsBU5gio7xD2JKgXHflrMx3pum+jktvYRC55jfBKGtv4xk2PYYLN/SL/wJTMggghcqldSQECCU+7zmiWhvfwoMgvqe9u+E8+6BxgJB44KJ8vpSh4WaFX/RAsoe38y5Y+W0FSoAfbUWXUv3o61gXq0xo/uirWBU12iaI1v+L+0ZKfvxVRQpc54t4/PZPe7a+FqFYt+Oec7TIXRVGNGeTxMWvKqrZeJs810RKx0/hB2RFP8DYis29EA5k4cwE8ZSzpIJ81kKrbyo8SIoLGy4tFTHp1DgCkitWxBDUS9+QRLCvY7GRMb4aIqckO6lhqiQgLG93UwsSelRLa5duvmwx+4nu1dirKAoFGMTrtBe+Vk0QTwVhUTnqiMVJiqCx3rL90R5wVKtrRDu2Ge1nJ56i1S57abK0JQJ2gpfC2PJc0WroVyrsneNlbkrLLaisk3plm+A1nCNnROpG3sQZhWFaBU4kZcYrJLYxL+vVbFowzbxXT0WI61P84i2WPWvPXweQttwB2F7oZ7FWKStHCctKFBluqxa22KtK84VQleiNe5fIWzl8+h3xkisCK3Rnb9hwq+qZ8wbPuz7PtPUZMHlS7fy/e3rOkVK1QQwtPr7QnYhaTs++5f83EvL2FBfDMIit3T59z9EPWwpclzEo7MGqgPv42O9mNWq3SVXjap01MaH3wP/vat+XLDwjScv4paLO4foGitc1MWLI5O4SGzRa7n5/J9Oz8E9QU5bodKjWlw0f8dM70bJsbYIT7dLYuSVZdPYIM9uX4KUhizT5LnyxYoW3XL27TY1bVOz4NyVGFRmMIWoFHgGm3Kw1rrrD2PN7X6Uyjh8+6xJUPFNYdICZ0uvDVOJilgjyim8WC+UKs+D8NeVlbyV7YYzRmUwicFK12ZrXe2mjxCZo6Y0DYLd+/rK5yxyVdZXgDM6KwpF0Upch45tp3FUBkmqsVKjfRvteDOtFNR6cWBcNChLNN0+NZRIQ66VKyb17ddKGrKsIK+lmJZsLzAhipGE1+4PRuW4WF+nEY5rOVMJvAi1CKXbhbhU0jm+00pWHGlF8JmpHH73IC9OrDNrQ7VTdm5ekv9c+aiP0QItXDTK5BJaEuNTQjo1CFnt/Kikfioi5XBvofWvwRkQSi/ODJl/77SBlT37j8s2YUxnPH9gUdmJFIp9C19LA7BmcN+0RmfKqKYX2CXhexaEgAx1r8Ide3/fbHsKIm1HRUIExHe6lTUm4e2tHM/yqatRtiN9ZSY/nvY280vG3PeB9slNfYpNSGFpzgtFtK7jyKSQ9868vcVpK1QikZmgN/XeD9u7GesyiC6NyvzsmVSgcx+6T7xYMbioiqC9gHoxIpQpw8RnL9uNtrKMtm3dPb98TvdbZsuZPTaxrnPGhrC17fRLCaFhI1GqQNRcEWlpoV7p7rE1jfJTmK2f3+K6TaD6yxjOusOftW6isEtLBMM0f38teGzHClJfvHntik3UJhlQSCznLN/FC9sWu+eU7UiJCQWehWrXmhh3CmmNxWaaNC0QQBMwWtJqukhm9bc+DHfMtWKslVFLChJpqKmChkywNvF1G37BTgwmM77lWZThfhsWsqo4LC3ffXokpEiq74NxkYyqoCgFgHXRnjDs0BjXJWXxohQf7QrVjLlEtNyKaROLzYDMRWFkKCK2ot0QYbyHStmpJKBw75MWrjhUiDAN2rqJ2OGzYdufgyDQyg40H1kjdBgZOqIziXIf7mONFjdNwk/3L6GRJxwcqxOcaEuBFb5PFvZ3T7DmUA+yE2dq131Ku4CQulOi40/koqNBq+NxFUr9408yRPiMVCIf4XssrJtlFU5GRLULLWy+Inqq0ZnXrHr5mPxV+pImB98yTvpEjxMrCRhlsV0zP7goCpVXmAN5Fy2jyKSmJ2lGM7bTjJFWHT2auiFs/getzNX7tAhWluF8F4qnrDtRiS7PxIVs/8if3benfI4xnbFl5yDgFggZktTSRWGsdflskfuJu5W0C9jSG8VaQZ6ryrwW9+NvGwrhO2JsFqIDolyk3Nk6HREYrAsdh6GJ4F6f8XN7ypSHXxgn9nUxoSzkErN80i+4Z23fXp7XS/0xDJElt/iFFI6Q7dx9mI9jcj+PRuAiKqG7Z3Jy3vvCtJoJRSFppAktrciUE1BSODO5Ik/Ic1/8nnmzO+FrbiZPshaT/q1iJ/1fCyzSTUiudgEJXCGzckIhSTRFobAmREZod3aVRnPel6bw/ifKXWcrKaGytskvevjUjfWF06GuyWrnuyKV/xyWdvhuv1x+KOws5eBDKSyL5h9kQdd4R8RMelv/HWP9zlclOfaOxMJKRibqaC1RymJCPUg5G8CnObWLskwrVYEfohrheAdhGk4EkNiUMIrK1UFVBEeJaH8MxSENY7ZMz5aRlyBWQvQmFNlXPmfW17OIgtJIUYZiXAE/+eG5vOH1Tx91cnVNFly5agsPbzgfm1AW5pYu0TNIFCqvMIWVNLQ7u6sZ5f0MInOZPa0eHtni6in0RIKYUO7H3y8kxgrwrq1CtoWCVOH/7QFuSWLcbLxClWJish15JgvWLtvDiy8vdimW0EDmz/rdkEHpftR8LtuWhZCU7qjWQN5MEBJUost2V8JCl5rSQdUUvpjUCGzqohFB3LjnBtcC6XZGhjPsYHJmQeSyrJ2wx/rLM6kDpe3X4SdIKxdBCMdaaIFtKCZEzXXs5H5EQdjHSWjj3xppaaWGZpqSpNpHhpwoabUSily1F+26dkWxpSvrpP2VHLrAhdA/1i8+knIYpA2fA/8ehgJl//47F9jOycXl58t3gVkMNmmb6IUOHWHb4f5SrFr/PL6TS1j3eApZvo+2EJhg5OFfV5IW5WTkEGGpZroA+rLmYb1Rhsb6SxO6I2EQbBlzEcOmTqinBYV0rdJFoZyzcFV4+lqNw01ZrrJ+aLWLHvqCYDOFuLHWtZR3VIkKOsRZWa+CaIsV4U4WrAKhXSStQ6wEkeK/i+5jIcqbw39EuCKIFa9dgr9Q+GqXfiq+Njt04lQ7gkwCXTskuVEd3kaHQwpL0WvLOhokUAh+tGvVEQc/nmqiUHmFmZdO0OdNgJzdd2Su09KKfMTZNIqKkZcowLYkJtRlSINMBNq0FyIprZvq63+plDQYJdqeFdWSfk8qDEu6DrKhWIK1EhG2FyYKJ26JKc+8of1jG9adUJOCFwBhtki4f2ZI6oWrrSl8vUqlBdf9eHph4xc8wuJJe6EMZ+CiJV2Lsu38gZ3MN569AKksN53zjN85ylZs40VU1TBMKQsZGBS02guXbXix6D1Q3JlnO6IAPuJU+IhT4opU80SSS1cAK1P3nulcYXwLuUwMIrUYYX0ND+0za6Cj68NHTdwDrS+ebQsHUQjXCUTlflCKRCMMukh8lArfweEqNkXijVe8sAFZDlIsnxu8+MRHUcKKZ8v0nVLGr8Gi1FTV1xE6iKR/TEjt5dYJIhMiglZghJt8fDis/6wl0vDiyELO6t9z2FqlpnZL00SeOsFpg92//1hUj7kXzLu3zOe5euOw0+R/tGsVYxO19mczdIER/u92smxfnyw6w3NVOoBEiBQKXNrRUkb2RLhcia6UnUHhgISXXwqPivifTCl0Knfxx8ESOtkqPxdBHB2DQAn0JE3WXb65vBy6ToPL+UxxWgmVCZ3yk6FDx57PJlIRetEipx2+Or/qKlsu7rQ7J8CfTYVFxuBMt6SCrEApQyEqXRzAvZvPaRtvBbv2UjDgFnScH4hAIoPfSaWGo6xP8AMQpTQ+tWBotVzHh2uj9d4o0H6+qn9HuTj51xeKCBNTtrAG745Q5GuVdZ4R1UiDsaAs9z51Pjdc/Aw1WWDGE2zdHSOJ5TVnbuHJ7cuR0lLkCqPbKbFgrR/aQ8uanHD2G4SCFwECyjRYOXAxsd5wy70PoqnctoRCZ64mpTyG1hWhEpyCcZElmTpr/mCqZVDlYuWOF+3VQ4Xoj4902UrQyDjxYjPfNyQq7cjW7yuyUswZjrUoL9vKvrXFhpjaPCx8bJVxXjvKtmVDVRxbJ2KlP7Eq05gholYREC/vnk9f2uSM7gMdz/GT3StpFQqRucUvN4rnhheX6ZrgsSKFc9M2VpSXy0F9YRBiEGgivN/ueyAbkvH88F2V587fzaONFX46dIhotMUEhGPp3HWt9CMCwmc91KVUol5lt50M22mfdLSLiWzQh5RTxCsiJXx/yxMJ4X5HpHQisxqA6iiS9w8O6aJQsOts991tJsG55x7jmpMKMyvbxU8LoZJbyYPbzsRaQbOR8r1ta2e1WInMbcZ0xv2PrqvMZqn+4lCetbbt0CnP3sofefxl/0NpfXGjNrIUENVQdnMidYJhiq6REMYvT+4pfx/bCza0Wytl+4e2bXVunQe2cguXlM4Sv6NYNTxBNUpT2b4VLkIwubU1HA+bubPO4MQqrGvlvficrXznqXUAiJqh1p1z7+ZzuG71CyyojfnIk0FIgbAKlWiyzEd7QgrCiHLoYUehMmCFKcWJKIdACicsfcFvOC7WCPCeL/jupyB4RCHaosZPeBaJM4jLsqJME2llsakore1LkWfbb0VZqDk5DRL223vOuPtQ7qMNC1O1IyVES8CF942tnHFbXwtR+Rz49yX8Sd9ZFD6bbb8ZyqnTpTDzERGbtGuRymiEZ+P+QYbG+jBWkHsX4TxX1Go5hZGkXnjkRXKIUFGibWRofCQFnLhJEmf0p0Pxb8B/6K04cpHuQDrRUY8Fti18wqa8AJNI56ZrbfszrHzU0hcol51YgvL4G9v+fJVdeH4fbfhShkJYO+nt958PIUVZFF2K8PbbWR5zEQRvuI+kXQDr7e+Nn9Y9160uTguhYqyk2UiRynDtmRvn/JsSmd1oK5ATPtQeFjrwPx6TYq/WLXYhr64S3Xb1pL1Q2EoEIwx1K83+hHV1HsJAQllHInxRa0AA1gTnVdkRTUCFiEeI5oQIj0upCOFaeqvOoh21BH6BtJVQd0drQ1j8J43ZCCeVHTvpz/yssFx6/haWdw/zZLHSpWy6NLpw4uPuF9aVx0D4M1epNGnqJiKHYXkCIDWucyKxJHU326RM2QSBFzKtNiwUXthIi8jcrB8pLa2JFDuRVF5X5S+0WQuQmSarFdSznJp3s5XCkofJwhY3o0j451cWlfnOpVxi0kqqzReIVlvMg3Nux3EuP1ri0EgJtLtHOo53e6BcR8eOvwx+YrIypUHba5a66cS6soiP5jVe3LeQRHXWmZRuuLjnMkaSa1mOOABK7xttJI0iKaMk4XsQBhdWByK6FmRZ3g7u46V9QXHotirdmydFiqaiKGRHCrFdl0U7QiLtlI91reKuuDlJOg98KO62ifDfwaA6woPbxz+IH1GJRLW/Ry5lJIw7rmUbfHh4EDfW+shf5QRCgkn94M/EurEVPmL4wAtnc8N5z87Z5o3TQqikUvP6MzcisdM+iTgSmYwSlR/GEK71PyahTTj4WogidFh4P4mE8kfLemEjpEEmdJyZJpMFjdTI8MNqRfnbJCpipvzxLSMolNEFd+bvCmN1IcuzZQhumaacuGusoNAVBVRNZUkLWVvwOJOT9n2rgxKFslhhsUZVRALtCIWB/mzC1SmESEIuyW1KWfeS+CF52okp5Yt4tWm3qYKrHbFKIBODUu7+ppDQVK4WxTvKOtMsd/RE4c5erZSuLVcqSLQ7sNWFyL+X7U4P/ILm02fSkIRhfomzoQ9n7VIaqLn3RipNlmmkNLRaCXmSuBbbkKIJEarJnSUWV/ErrHORlaa9T9UCz/BHOJaufdl5tbhWZQvl4nyI1X0lajJVh4ixsmwvLt9vYdtW/QaMVRhjkAKypCBRmkIrqmOHCq389jqLWYWwMKm4NXy+tbf3d91P7SJeJ1JEWSh6NCdvXbg5UKVfkG4XkIMpnZiFsL5I3YUqrBcy7rbqMaOMQIG7jy07o6ovpHyEuxD2fbIAxVZMG3HfG93+/pXC3+LTzLbjsk3AZNa5QafGRf2qnV9zlNNCqEim/mJFItOBQfDN71/mizEp0wQdC4Os/OJIfF47hC9oh40rPxpGuzCB8q2d1TPMMNxLh24hgWvNlCBonyGX3R0CLNZFdEQ4s6Y0DQspojCfJQyis2WdihMpaeKG1ZWtntZFZURlsZ5ylIkRIExHS3UIY7tOJAkFCCPLIlZh3TwagOsufoZ7H7ug3I6q6dKFtvRMAef7Imw5LK88Q8afCVtBq5G4bp+mRDakey6ND4dXBYBwBb5NQEhMXZFnpv1+hbqD0Pwi2wsGxkVFcpkgpaWeFqRKkxuJEGn5PkplUIIyYpElBfW0YBRcwbQWpV+OBUwYMEjlsxUKO4NoCWI0fA7DfUux7M/W/ftnhUEkeE8UMMiy2NpYgS1UWYZhjShN9SbTnzY4b3A3G4cXYGyne225D6KdQsqUdsIhdSePIUpirDNqw0iKynXaCBJlfOFuu2YlfJZCbYl7r90rsVZCZbHevGkR9STvaOev8uazXmh/ZK3ggY1nlyKrFJ7K+MGNEi2FS6V4YdfuPPPC14pSrICP/CnfRVXxxClfhD9GR4z+BN0kwArvsxNEafg8htvDccd9tk3mJ5TXNCpzackrz3iZmizmbDQFThOhEomcKr5532vai5sPk7eL3mifEVVaT8uBXSESERY+QdnNE9p9jfXzZHxu3HrTNZQ3+aqc+bbz644y/O1rPaqdENLXcy5ffABtBXuHe1xbZiHLM0ijRelHERYX5SMDhRcqtqhEI/yE47JuI7z+UG9iqyZhfv+MdItKarCiHRK33pvhwefPotbTQmvBdZf9FCks9zx7HvV6jvITkQslyYPm86kFJ168CZmP6ITWbNeh5I656dHtxSKclZZRCNu2IfceMQawqevskalxJlvG+51Y6+pU8Me8EBTCncqPCoupiTJaENJqoc1ZCUuaaOqJFzSpotlKCFWPQroohA0Co1qHIkIkDi82/espIzu2vK+VMuyeEzGpRaZO9IV6JGv8m2dxEYXwkkzwyoH7tpzNW1Zt6PguSCw1VVBPChLpPsdaS0z4zEnv+6IMqdJkUpMqTSIMUhiMlbSMIjeubqXpIy2TYyDC16qEbbSUJlEJTe8aHOpmjBFoP8jPUik6PkL0YLKx4HVnP8f9L53jfYtsKY4T35qea4XWLkIHLqLnjuWhE23CuAddSLRwnXK2DHdU7l1JZ5a+NtXPaKifCe+h79wSBncCJNpmb9a3SQcRbjM3ofw1a7ewoOZM3uayQAlEoRKJHAHrDcVssH+XdNYRBIQPQZentJXbDaC9OAkLSSEhd82ZJpXOddWnbgrvRWJCvYltL3yhhqRa5OiKct0+LBgY5ZIF28vdUsLyxN7lPmXiW1GlM0Wrbq9aSKmNpNlMycdSREMhm8L9EKbW1boE47dqVMm/RmgP8tNalml019arMTXpUmE+MlOrt+ipt8gLRU0VSCxvXfcMPx5aVZ5dK+MWrbZ1uuw8i1WGYO9eplAkiFSjUh9FCKkg7cP9SiBSAQXIliB0LpeW+Liza0Oli8O/52FWUjBsK6xgAvzgRlu20YbUlFKQpIVrPbeCZpGUqat2wbNA+ehR+7PjxUroNPFirTyzrkTLguGaMRaNgsLdLlONDIZy+MeL9uUk0dSydorGzUOSSGn5wfYzkdKQKpfaSrxwdPOPDIWRfiF3UY1QR2RxqZqWURgEhTd8wx8jJQwqadekKNn2Cwr3S5WmK8mpq5wuK0lkhhKWZuEmYBfGlnVAYf5SO+I3WfocnlT4aJaPeCXKUEsLMp/iamlFM08ovDBT4Vj4ad2Tpyo384SWSmgJVQbCSionHMHBN7Reh3RcOSC0rJymPa/H/v/t/XmwHdd1HQ6vfU5333vfAx7mgSAAziLFURRl0ZQsWQ5pyRLLGT7/vnI5rkQZyo4VOmUnrpSH2LGdVCInqUplqJTzRyp21S9xVEnKsv1psmgNlCVTokRxJgUCnECCAEGQxPCGe7v7nP39sfc+ffoBFAeTGMjeVY/Eu7dv3+7T/fqss/baaytjmulfOn0Oa7Ue49oLD2DrePEV21ScSzEAlSGGOEV8/s+vl38Umi5I3h/ZH79N0ul3BSs+a9hnYaI9El8Q0W9AHDVbh6LsGBVAq3AQEaMYjUWYPqN/nKlCA4AH4/jyGHv8tl6fq2s3PQts6n/uS4+/A82sAPQBLdUW6HqoNB409aCauoelnbOxR2nFTwmo2Oi0jawsbaXqyojRqM2OGUkTE/Scv/LkZQitw2jcYGEyhSdGE4V1arX/DqDCS+sG3ZpJBAsYUUdaN2pV2+KSDoQci1+Kz1axgRC1KaCsSBmohOGy40/CZKPfiUX4SgCCZsdah7qWNFAIAiJN/yAVNcBc1WhprghNvY9JXGu+OunyRkpVZT1xZ2KGjK3rJkqnzFz0ks6xe469WOBzNLAiwJZcxGTUYN1kijXVDCttieWmRG06jixcxrZZFApauDSPE/lMjE5KkYlR6mfssw5dWsf6KvFqTZQeY4gOoXBdqk/TQ4Gz77NFgWlVXkcYW5KqrFAk4NRmqVeg7zJtzI+Z2FmqysBLxwKevNCQfSp4i2bq5xQYU8+TqFetRbHHpBExLjr/CC5f13nHvJUAisUAVIYYQuNPv/LuLi3hdHJO7rHoQIk9B7JUCxSEAEh25KYVyD9D5nhaKE2vq2NfRFAkRBO3kpRBhuAQ2MH3dCl9etscLi1tZGkbi1M9uG6++NHe7999ficAoAndyrGpVEhICtasusmEpqpfKdfNcMulewAA+5c24PEjm8SgqxXQYGXQ+UrXOWFJSh/RBNEoFIWmKIiF4ncR07rEtC5l8g8ezgeMxzJBtjqh5kZdRJICGo8bOBexvDQGZury69FdRxW7wjN4HMBzwsz4omOWYqAujWTXO/dBYdLMjabsWi9GcDY2GjF016XyASMvKSDvIpaVRUmTV1b22hmzddqiZLVvdL6CkQCbuNBvK5AJZBOoyYBPYMK0LUA65gCU4egmUkvBFRS7sQElNsSEw/20JKXKHmMbHLF8juV72yhjUrceTQKcEm10CFpJNSkaZdFo1Y99WfbBV0j9nCpuuaT7W2iix1cfuwwzvRfzfa1magxslT6gdJIuKl1A6SK8Y8xc0WV+E5g5+fuD6oJCEGBm6eE87PrljSLteCZF85YEJ3kMQGWIIQB84WvXw0X1HXA2MaNnbZ6CAFQR77/8MXzj4UszrcaqlRABXQdWmzDkV+dY+uDMZFUoYsvsQQ9ZsTrXrf5TU179PYZOSGqvW+O6V4rVW71ny9P41nMX6DFKM7x2pF19na7sy46yj9GhKFv8lYv29vZlqQDvIzDSh3kZUnnq6mOzslPvpJLHNB6SGvG6PwEpsSVw9GiLCF+qlXurYCLL+9tKs3ARo3GNKQOx9rLEtfOp9MGvFVFeuw3njqXJVM+uuQGAiK4nSwTQCphDEVBqibOlgJrGI+o5NcH1JjZjDaZ2/YlBIzmPVgFRKpmFNjdkZB21gWjnBIfgzG8GCUzauRVFSONjE7xN+HXre4AinyTt+lhHaWNHChLPnWlbpGaWHVvQpXnseudMTASltJGBFGGjxHywKAJGRcCkbDBX1pgrak2RjNC4eFJlUAr9G3x07w74yyMuXvMCTEny/f4q8vdGrsWHLtmLP3/qYnkvZ0JgoK1LURGJbmeuqLG2mCGCsNRWWG4rrLRlAn+rq5GsuWhggneEgsWbJq4CWl1qSf69cbL8skLht3K8pYDKq7kphxjCIpfDdTo27XNhFSLZBh+94f7evXW0mXTGXbJRX+nPSC61vZQRZOVMRQQ3siJuW4ei6PtTFCqAFIt7h7btp34Y0GoEVhM3mcBIz+21/h1YCsYYFVcwQqGW7Z7hi4jxRCaN6UqFernC7Xuv6OzuAdRRgEpZBhD1RZzmqcHZ/yOTPPwBeEdwBNEg6MRobAMRA+wQZw61dmRuGw+eSYoDRQQVWoZrOhEnVSSTuRozV6JFATRIwuYfvuLRVC34tQMXo21NqKnjyzbI6IshPXepMIY6zDrEUibZsTIBtlJuW3k9r+6ahUJYA53kvRd324mWpddO0jVys8j1jxFdOa0yG1CDOo6E6MSiP5V2Q9NrRUBVdGXFBiCYO1ak9AIk2+jQaFqlyO5/Y0AAiJjWRxXJ9u9JK9d2pmfJ2BjT6JiYtg4edSt9lGLtwQXBezmW+arGuGgwV9SofEDkFlNX9u4fGxupNOtfosiEP937TrRLUur+/iv3YX258n3vf4uRa3HLRR3Lcrwd4aEj2xNYsDSWJ0blAsa+wdpihvXlMhwx5n2FpaLCUlulvm72t/hyDrGRHSIoARhAFioFhcTc2H6WQvW2q3J9SwCVCPnD/4unRfz1I7v39SahAbgMYRFBycTqi9+5BtULXooq1MWxn86R/xnY+Pzd1+LWG+47eaeWRrBJzV5utUme5dCZkpCRSMyjQqHi2thZqdoKtXW6SnVaKql5/5P6yhC6vjcAXjgxj0f8Nly1/tBrGhtmSo34pHonIJbK+BQR5GIPZFiFSj6mycBLxYbexVR+musYiIBGzS+sSmSkAsbIQAi+b85lQsNACEslAkpxkK0diIE4BtiJMKhtfGIGLFXhvPQu4rGM2/sufqz3sP/g+Y/j9scvR9v4Ln1g+oeorrSBwFVUz46M/co8YtrWo81o/pGyA95FVCpCBdQXRNMZqUKIgEpFw4Dsq8fO1AUCq27Gnm+mzSBOx80ZuGJomq2QCS+o5oez8ckBBdpCfXSo04mg06iYmWbLrmuSmGkvTHdU+j5IMdFo4L6Jm3cx9cvhaG64TgGTx3JboeWAOvg0Xpb6tO8DRxF7ZwaHe/bu6LQrJMClYZeO/7XMCZ6k/HxNWeOyhedPuU3hAia+QanAwpGcd+UCHEWUFFG4IOJdimm7koRdC+zQsJxjo1qZkiSdNHa6X0jqbDlUON5OXvXxvxXinAcqEYSvPHlZ6uhZjSKONhN855ldKMuADXMruHbjs6+8oyHektHo0rekiIYdvrT3CuDQCIiEMkC0KFH1KC77v1G7rBUeGZ0OyH038Q1uuOxJ3L3vgi71w0Cvs6pmjsRJFEnp77QUkqsgJcP5QbMAlcb5tC2nVX63dMwp/Kh6ETFFiydRza8mAkuKxT7pvaSnONrxdvvMe+08/NJ2PPPAdnHCHEf4NY2kXhR4MJDYimT1rsBKJkM53jK5j1KawAGgqT3izCcr+mSDH9ExYBFA7aQcOhJCwZjOOXHbddaZukndf0/lXt02HnG5SNVdVlkDyD3iWgJqB9TyOlcRVEXVqYhYN0ZhHkofMk1Rt1KeuCAd1FWbERUcWkWN2NO3ySDNk9q1Q8BdTWJ4ZoCVowNXMVVScezukbyHjbEASWOSpXgsHTUpGhQUUbgCUyqSt0mMLlW52H5yIFi4iOA6DUkbHSh0otlIAngardgywDOX+6toT6nU14elNNgYGPNeCavAymrDtV4QElj55mMXdf15AHz4su+9arAy72tcv+nA991mztWYczVK18IrECkpYORaOIoYuRYj12LsGowUeIyp0e2EgYtKzwZ9ZnkyxxvgRJzgkaUdr+p434pxzgOVkG5WoKxa/MjufTjejlCWAZOqwaQYnGrfTtGww0roGpP9xeOXAMT4scsewVcevwzxyAgwPxB1jnWNkhPO2pujq/IxwzbVacyi/MkstRXufPTi/pfbxEDiBstWmbJqhZuXQU5diXpW9KziAfVbKWQCiUVXfptWsVD9Akv6J7YOTKR9SDS9oMdauvCKD+VZLNA0hR5D5yeR9AcuwoyuvJcKE/IRYbHE/iPb5Li1hJtNm6GgJASnehqXJlLndSXMAHtgpt+dJiRNe0g7gI45greqHT1wm58UwEiPHqiY2aONhGLUYjyuk/U7c5cWMyBrxnNSWyvpFHgGVQFUMSJJ9RXVBKcdl0PRsUM2YTrHGBWhA2lMqINDiL4Tk2YgKRdZJvEqMUoVcnongC8HViF0TsLJyyR2HbdhPuvK4EXV/th3mR4mByqeJM2AotOQtFHuKShQigoeDFQZgGq9RxOs2knSYBYGQJvoMGsKzJoi3fv2flW0oDkRjldFwKhs0/k2CpyDArv8Lra/B857UX2fSG0piDELxRvqYn68nZzEcmyqFrEGMzgwxq7BnKux1q9gTA3GrlGg0ibAAkjlXn6Wh8Ma/MlL737DjvNcjXMeqJQUe/lEQP7Q102meNcroOAh3jrRsMNSO8KjL23B8e9sgf7dowTQXL6Co80E7929H9+MFyK+OAK7KHOf2IbKatQmWmtsx9S5QOrK+st735GqAVypnXWZOnt8ltW4CDOjlM+aRkU1Cs4xqiKgKlpZPbbdatS5iECdoZWtGoO5mDpjM9QTJRfJ6KTNDDx3bC2eP7EGALBz/VGcP3csbWZ+JXncoQ6dgOhnvI+YVMKMNE2RJuKoPWlEtAoxcouUKqUAnUByoW+24uXgwC1p477+atjSR7NZibb2/SaMdg0IXblulgLjRv1ZVF8EgqRqVjxaYoQJYaQTbJoE2eGRl7ZjpSmxPFNw6+RzkrITrcdo3KAmcbG3UlxSUS6HJAoS9kwn3lL1GLWW39ZNkSZb84eZVE0SGJtQFeiElyJ01UH1AY6QwEHpQ0rnzJoCTZDzFNbKKa7Le+cIO9hqk8Co+hnxRHEo2aHlrvLGUj15GwfosbbKiox8i9IFZYuA1pk1Puk+uooXFzODOGVGGh9Uy8KoirpX6mthQmQAHRuk5bzJN8eYuqQPg6JHpB5LjKgNrQX8ffPABfjh3Y+9qbKAdX4FjiI8GHNuhrFrMO9mWOtWME815lyDMQXMEWNMBA+C0/83HLGnGaX06Ns9znmgcqqY9/UAUt5m8fTSBuy96wJpj14xqAWcrsSLfRN8+8l3SvvzSij7NKkWnNqlJAMlylkUfSt3/zQxopWv6vtsOhSYEFNTP1FqNsTDSR60s9aLkNIcYPUQnKYpYhCBLZGXtEkj1upUSQmtTUZdKkWrXVRHIqtbebA/8fwmPIFNSe/wji3PY6Fa6VgEoFf1EVuPWIqrqCNGrTqTkIGnaH4insGj0AGKIKAhuK4zM6CTjP2iOoLIHuzE9yO0vluh1yqSdQxa8d11caTW4KFzv1XGh+27C06UPwVhQCIKLBdjAOJlMq5qHFhel1IeK02ZGCs0Yu3PVYSbtKhGrQACx6i9Fyv/mK3ibfx9J2C1NI8ZwAUFo23j0XiPshSQOio7cW3y3tD7oW7FaCwE6XFTeGFkCJ1gtcyYFkkRul4FfchKzZ2yCW10mK5U4t1TtaAxEIuQGBRjV7xW1xCyNKjuu3ARa8sZds4dPeXf4oMvnYeXljt2wY47Nytklnspd+4lFfZaCqz0AaOilQojACttKX2DghPxrd1QtqBQoEIGHu2+CdliJBKY5B5eWSV0faP7xK3xU4xJdFDr/TK+uXjp205b8kbFWxKoDPH2ioYdXppOUlkxh6x/rKV0vOIGS+tYGbGjroTYPqTvJ88K21UOVHQllzrcQsFKss6ntK+UPgKSKDIWEdF3Zl8IVoKsEzxpF9oG3b6MoACS5mU1UAHQ72bLXWlz0Anjgf07uq7CaglPkwA3aoUNaRyawmPaFCIiHAk9tdKUmLU+Oec6YlAREeCyiVu+MzrpSJzYHxJaGyUh2EpXm+axd4BjBOdkDBWQ/dhVD+ELd14nx9c4UASiZ9Ck0V4slMSlAIQF65VrC0ik2iHMPOqySBPiyDuMvEyCo6JFqAizaSlsSkvgCaMatS/b9yZVmWTdqQ1kWom1iVHjKjAKCIMya4qU9vEuav8d1XOomDg0CozUBr9j2aRCqlAtTJFZ1xubM20t1SKpqJEX9gNzAmIKH0+qBnJgtY8PwtBw3w/F/g4iRJx6Knv2yIRG9TfpWqBLKQJdU0yp6up8ZJzTYyrFsK9Qv5nKyXmuNCWmBoA5Y1Cy6540ZgpWkP0dcyREcmgb4JtPX5js8AsX8b7znjzltX69UVGLeVfjRBxjyiU+uHYPPnf02t4CYYhXFwNQGeKcjoYd7jtyPl767hZghC6F0+pzrNAuqGYzDf2/Z51YMzCSPdiSNTn1v6/rr4PuQWkuogYW7DkasaoJnoIIdX2ylaR5ouSVGE6BStRVrbiqKhWfPZTJsYAOSz8RpaZqTV2gbcVUbnVuv1ed1BDYOaHuFXyFRkpHrdQ2bYvONRceXYVKICBw5w7KnfusdTxmJrCL4pyqwIYaSjkCNnO9SPjYdfchQlMwXpqyUQSodminJWIZhWVqKWkxeoZsuqqOcxEopcmhc8JuTOsSrfdABYwLcYtNJnfzQYSzVei6TOs5WddeACAfBeTqvUB6bUJwmJFPegpLd6QqKVKQq+Np2pRGUyLJXyOIMJiz3yndE9YDihGzIfeaDvQuoiRO6RvTiZQ+YK2LmK/qdN1iBkJStQoAeIBi1kBT/0isRHmlLfHCbB7bxydwqojqg1OrqLpUAGLl54FPNm7LjylEh+DEpt+B0Wbn431EW0TtOUXd36HeoAzu/t5tUZKxe3lLBNPr+FX2AW9EfOfERW/4Pt+uMQCVIc6ZiCDsPb4l2XBfuvYIjjUTPL9nM9Q+IoET6ZlhzbrQmXWZLXkpq2/OmszlXUlTKiX7fmMoUvlq9oZZxduPsB1etS06kWrKgAskAynnIoikuicGEZE6Y3OMnSFxqY3UBxnJiZSQLPtH4wZb1y7ineuew57jW/HEc5sQpvpnngM1O0/VY6Bxnfus61IqdSuftTRVtzLu2KWkHSBkwtduNnbKqDSNsgtackyB4HKLfg/QRqHfH1/chOWmgp8RQoUE9KghxKmYwKGWTswgiHA5rbTRrbCrCD8O8Jq+ya+nlcAa88BMKCcNijKk9BkATEa1OOiOXCqdnc0KARJaCWYiTRO2dmXcAnBSryEALlgVjehZgh6HCYphY1wEaVboGEWhpd4EAK7TaTClCRxwyavEfEt8Zo7mINuZs2xkSXN5PX5jTAoXYB2jcyaljQ5w6BxlY4Hj7QirQ1JZSONSuoi5UsBRHdUfx9gm7iqLggIy2YewTpaMyW33iyKgLQQ0shkcGljNAItVb5GPaTFC2d+Apc8qbUL4dvQnOVdiACpDnFPx2Pd2oDjupFLkerl9113yEpbu35h8T2RlroLPIIuqCAJKTpNxclitBDzExneTWybm69lms06KgEyaViVkoCUSUKhFPhGYIziJYZBW+hw6Ol16negmaeUc0nE4kmMFgKYuktnXSU3mPDA3P8UHz388He7lC4exWFc4/MJCB66UCcpXlTnr44rOK0WqRVxa4ebW/U61BJI2c/CaQoiO0jiyTkAdmEGXrlLxqY0baX7qI5c/AgfGZ++/BnOPVfCVgJhYSKdjaX4r5meudtIw0QERWiYMJNdYVtYs1HINiqwaJzIwawusNAVWZpX4p+iY22TpPaMsW1y1+RAWilkar+PtCA8c3oETS+P0WmQCbIxMu5Jfp+ASUI2qO2GouV10aBqPthF31mrUYlI1qXGhaTeIxL13hhJAv3txiE6E2JEQCofgXU/MGzRFNPIdQ5aDE6/mbflrdt1j7/WYAMzx2RgvrswlEbT5tKzUJSajGt4xRioYNyBXAWiJ4ZlUICzfNWsL1MGjoS5t1gSXwLEjTgZzhYtSOh/leJhdx3CuYkBlZ4Zygcl8nVI9VRGkpUEh4vKDywtvS9fXcyEGoDLEORMOjJvf8yC++pVrAQDP3L2jW2lnTqFgynqdQCzPKUvZAPBFQFFIeWzberQQcWdPjcgEKBsAyH5s9UYkIIUKqIcFnwRwyDHg9UFqKQrIpBUCwTnKKmiEQcnLXFlKNTJtjDAW5JHEvdboECzVMoema3t0fKlUufisoKPaTV8jOKMDUui0LjEKkDLDMfsB0Lf7Z9PWWG+gLj3FEWhbl1oBdOObMUMMMTBjxsMvbUdkwvYdL+HYE9vk2mn7G4oQBoYBsmoYWzlDRZSBQEFZtEK/IFDnLwJpcFg3BZrGI8w80DpQFVCOtWmiggxzmd1/YmOvyeNCMcMF61/CfS/ulHvBVuy5yFZPjK2poLJkTr1jaq0ysvvJWgFEL6m7WCKVEpuGRX5k343zCgK7axpCgZAZ9jEL0GyCRxk7ZsQEvIC2adDqIPt/QRE1VEcTCjWEE9bBEaMwY0LuPE7MHwWQY71g7UvYWC0DAO554XwsNxVK3+lhUkm0GsIJCCn1+rik1ckJkph9Pg8iA6XoRN32KZJFi6V/btzx1Bsumh3izY8BqAxxVse9L5wPQEpXb9j8DAB9aGlFjrVAJ0uTaLBnxIK6dJDNaxktX/qQcuXRO7ClgwykwJrp6T6JgeAQIBOu00ofypgGNoGnTcRpIrWddOkAIHR6FC8r7WTQ5WPSrtgK3/a3Zv0yRkVAiIQTixOpnGkc6hMV9hzZivG2FkfrCZyKDzsDsA4s5cDEUirsHLhgdaHtwIqAPEqlrwJYOGlQOq1BxtSQslEkJaYxdNoAclkFkB2OZ3DB2P/IdrhWAIn3dl110wD4mbwXxkAsgVhpx2MDrHYvGA4iSfNRppNpgxOX1xUBKXYcVoFiE/2karB2NEtVJxYrocSziwti/sYE9joRZs6o0F5RPXt5r+CSCWvXrAgr8cJ8b3JlItT6GWupIF4jSA6y7JXxIl6l9eiYkDZ4KRmOLpntAQAqvSXtvlulTxHGIqBwAaSmb5QxJgUJC2EQwhxql9sK66uVBE5Whwl1bT+999DtP2dzzM24RsdsMjKwbfc0MQi5AzR6z4KUCux/7RDnUAxAZYizOp7ds1VSIDOH+KED+NbB3fIGyao5NQ0M1AljNSUTnUxu9uCiqOxH6DxLSCcaVl2CPdDTpEpIDd0AoFZmQt7jZNeAlNIg1WEAcIArA6iQcmOoEy7QPXDJKHcrLVbX0apoARRossnfecbGDcdx47anAMiEeb/bgWMnJjLPETCblnj4yDacWJykEl4Aydk2BaFjUqCshaalqEAmmu1HKuNlgL0cfwhi7x9DfzLQ6UPGVFkKVzBQRKn0IepIFj1+FIxYAHHMiIVDsZwBvAKIhVxTirLv9F0mnNSdpd5K6mlj4uS6LdSDQ9+btHAFoyilwielqBhoWo/jPJbbijajUHHnsdkYzx9aB9PZsF3QSKk0lrXvEGVjKGkvATfv2nYA877GV+OlWH52TQKh7ABuHBpXIMaQKolsL1XRgkgM4aJjOL3fbGK3aq8QO1bFfHga5+FbTuxM8jvxUrZckEPkTnOTi3FlKLnHwABARTlLcmrGY8tkCSttmRiXvBoot+G3MO1KLq5tg+sBHAOVgJkIKlZN93XvRhziHI8BqAxxVsdk5wmsHFwDLhnfOHARZg+uT1oEeyjZpGSrKjEfk/QDNQTXaDrAltlBfDvMrdPszkOQ0ty0CiYpp6yKNlHRSeiaPWB7hliaarLPm7dGqjKylWBeTgkz8rKmeCK2ZA5JnAmIKNBACiC+DxetfwHfPbZbU1GMZqXE0doLg5CBohS6+oTnHrkSSceRoZVJlm46OemfTyo5Y5AmxpiluWzbIEgkUhRmwQCm674XUa9dwYBnSYfUsqs4YoT5iHbiVKeCjrECEtBJlUMEoIwCFM2qv5WUm1XTyJhyEtpaGsWA13SlSk0Ajx6bhy8CODqE1p1aC+EzpsgzXBlTRZH1KmKtwrL40K59+NzT16fP9Ezzoks3lJikiZ9NSglBGBhW2rCnp0JXUQR0pcDWPwq6H1ZQ4F1EYIeWXarscappSSJWBSKtakIsTVTq66dqSwAAO+eOYt+JzckzqNc8NhPJAkh+PflCAUDSrFiFk6VWiVlONLKCXuqlYPNgBr53dCuu2/Ts0P/tHIsBqAxxVsa3nrsAbXAYlS2WdfJZfGIdfIFOwa/zW/JNUB8VVNqZuHVguEQ7M3Ufiq24hVZlmwymvGcE31H/Np14x2gDJcMzR92ElNIq0SYhfcPJJNihgSx3Hmwi6laMtk1sRAgZonT+Fe8MExhKvn9135EYKJVTA12DOLaKD6UtxHaOOt2LoyT25ezhzq10GGmVdfJFn44xW/vgTJvCoLKVybD1MI8Xzb3oOes4AYjlKr8T7a8kDAWSH4ufdekzriL82gZhJroSs8vvaZGcsSrcr/bQ77U0AaCgSrU0yTBOIwSH2DhJ7Si4jIHAlYIBA5wkVWWw0yRGua7GurUrybeEiPHcsbWYTcvOdyd2TRx7YfdnFs5HlKVoZcwp1q6BOcICKmTNWIigTS4tLSRlzV2qx7ZpM4DjiDHzBSZFIwJTBRCmX8mZkE7vohoT1UG9XNfuRqt9cjDliNPfy8v1prLUYwsnk1XW98gAWwLTBJxEn+RAmoFnD27A1RsPvq5eWEOcuRiAyhBnZRAxjh5YkF8cZLUaWSzcg63Wkazp02rWyUrW+4joGUEFsLHQdIWttnWF3ZAHF6JX8V60DFaybKvrpvWpdLJnpqYHwREqotSDstWepRFOlR9n85rIJlENKws28aGVLkcmHDy0oQdU5osamzYu4sWj80kDkY4r22dKQWSYg6DMkzETpmGJrGBFVMgUuwaB0NU4WpcmW1+EBI4oY2YMnPTO3QCdCV9bTeEp40StpOgMDLDZ4XtGWQYBeDMv7Es+sWcsWAIpgIJVpGsC6jQ3YALX6uKbVu4Qca2WPpvugRv1QsnTYQX3UwyRsH5hGe/dur93qY+tjMVMTsEq1YS7nr4AH7jgcYxcq/vJ7s0srD9NDlIA9FIjNmFHrSCLWqljW5sw2/ZluhdS0NIEKY1uWq/VOhHzNENkl/r+CFghOBYNS2JTtBuwHJP8nTTsMYsebfSpDNqOc3VEEGL0CQhJWkucchOQj05SjExy72Vjk0C31zVIWkHY9cxYTH3tnud3pjEtXewJpYc4O2MAKkOclcFM8gA3MzUnYssYCD4gTSC5oVPuY2I+CbFUMGDpcwU1OEkESsmaPO+fY5Uv9u8ELCwdoykHcrayU7BgK1+dcEn7jSSGwLQFSRPTpSI4Euq6gBtxajYXgutYgyzmfY0L1r2Io8fnOlt5RkpvmDaFrKApd68NrgMp8qpujAS00v7sYR8pYwaA6Aldjqlf9pxWuKkiSxkm1bJQAFwjxxgcOiEsQ436pCTZWJZgn2vFf4U9wEU2weeTvKWe7Do5pA7D5mmDRo/FGDnVnJCmCsGWehC/HS44pRVRdvdZqviJp2YGdq87ij2zCtNGGDfXENr982h3O4wAbLv4CA7t39idg5UxQ3xEmAWYFC6mLsaSilSg6Ax8WOk1STfkqoEnTg0BAaAqQuqp47XiZhEVpk2Buu62qcuia6mwikkxkCKdgVkADZs3i+llHOroUcdCukm70GlOMvDSZsDDXus6M5sHDycBMND1hBI2D+BM7Gz3acxBd85qEuPI8wsJuDrPA1A5B2IAKkOcFfG1AxejaYqkCTl6dF6ASotu1ayAhLVvR89tNq3cs4lCH0Y9O237sV1q2sccKq0fTk7Dp6ob6KpQUynJw8T2x5wm6lynAZvQjGVQ+j86FoGjt86zamLVOvHCUCDTNl7LkuXB+hcHL0x9WQpNVVWjBtZHJUZC5O4Bzaxsjxqe2TCl6qZk+69jY+PMBAQgRI+omp/YWKk1EjvC5uCr+pe8z5Htr1cerowYRcBPCbGQDVOvJAWlXDLQQISzjUOzVAGB4Fcc/BSIIyD47FoZK2QVRmnFnV0TuYidBoJJy8CFzfHLIuCNFYvRHBQsQUmeUoCupNpEb0PO+g45HF8eY//yBuyeeyndMzvnjuKJciNmrtQ2D+gxWzdsfgafPbS+uxYKBBlAhPqk2H0ZXPJXCSzHRRQwLoJokb0AgnHRYmE0xVxRY9qWONGM0Kgmy0qDOw8VTgxTUxdYKip4YkzKJpkrAt8nPcOUulAH7hoT5iXPeUVPqzqUOvoshUVqAmf3rHYZ13vc7uMQpQrJhLSrWZrk7hwzJ2AH7Nj8UmIoe6LcQatyTsQAVIY4K+LEkXnQzIOriOVKBJAJlJi2oGBwkAmsS/ugm6hWUedEqhORdH2aXMEQ7YrvC2GT3kK1Jc5SN4xkBc+OEsuRl/smEWkS0uphayUJSNNDpmMhgOERnBhXmcaFW5mkYu3R6Gfl8wRXiF7hxOJEBJ2Qig3nQypllR/qWB1aVR0DdKzIqcKOrVXQpOeSUkeatqFWwBY7gMsIV0SQiwq2Oqt52SeltBx5NcHTtBAFwGu6x6p6QoWOhbFxnBGgTQxzXxUpN8+YtVR5RKksPAmc1XPGvE24UJYrysRm7A0FZW28anog4CJWETRp4cvOFM/aFQBAjIy6LvDwge34ntuK8bjBljVLSWxKnsFFBJeUKscszGjPxh2QMXeFaIQKdU8NqdxYr7+JUDOmpQnSzHLWFqhUeVxquqZ0AXNFjcoFTEOBaSg7LYoPItoNDnXwCVxYqihEEZ47/e6W3Uklx5EpCXJb9pLCUTbIgTEuGtTBY4oSjiV9aGmYYpVux7uufxFBmBTpC6RsqOpyLAyES6qIuh5UxLhw4YWead8Q51YMQGWIsyLeecmzeOSxHYnx6MzSIBOMpnS41LnUmgF68f1wvlv5mV6iKER3MouSB0frkimY6V0axyiLkLwivAlYQz+dQRSVsUBaoQN9iYJtr//QibmrEhLMxVKloMxCnHlQwf39MIFrh7bwKLRqBYjdpOGjiDs13RDJIQTAxJNR2RwCuuonyvYdVgEVB5n1DUhZSXdiKboUFkJXSYUo6Qkmj7Z0nQtr3n/HGBQm6VVURHCQ6+f0e1wLuACwIzRrBWCZuJedsDSuIZEnFAI0zEsksTae4cog6azMcA2RemZ7kGECi52taGJCposhIIzlvCnIvmPFiBMGJgFFFTCe1Lh4w4sydBkzcXBpAc+9uICwXCBOPU5MKgDSsZkhYDd6NYGLhDsevQw/esUj0tiPlK3LSpHJc0p9yL0mzf7qWYnYKsPmGFxJCqYsAlrVN9VtkVgLS+EwE7ymSayap/IB48wAbWVWdsBLWQ5jR0rX0UCRRZtSaMPA0om3SsMOdSspnyZ41NGjCR6josV8WcNBvrNljyYyApBSUFI2LY0ja72XrMkiEQuQ0caKUVOwa8oa60YrPZYk715tDQAHk7dzO14TUPnkJz+JP/zDP8T3vvc9TCYTvO9978O/+Tf/Bpdffnna5kMf+hDuuOOO3uf+wT/4B/iv//W/pt/379+PT3ziE/jKV76CNWvW4OMf/zg++clPoijefNy0f3kDDhwXkeYF617CjslxPL64CYv1CJesOzL0ejjNcfvjl6NerEDW+bboVnAoOOk5unRMFFYA0neEdMXpfEyCT2NAjDJuC4fonTTNU08PanWSH8lD2FIozFHa3gNJOIuURul0LSl0onRq6Z2AFZDEpSlU24CAbuWvjEDq1EwAtwA10so+Zo6uzCRNBu0YDERZGscOKVqOnzVlcQr2JKXKst+T6JcAiqCi22B1d2ST4riagNYLiVLoJKwpDFKxLCDlxeyysVMxbBzpAOq5mwYFxpgpI0bKirBjxAlStY31+HGlgAiOsRM92zHbd9o91Ti4ZddVFbkO7+Qlz+yBWDDCmohiocaa+Sku2XgElQunNDY7Vk+wZcMJnBiPsXR4HmBgOhW3VWsqmHx3GMDRUiZS01gwNE2mQIlkrK2pYUvC2ISpl95MZQSXXa8oq/oJoetOPGuKzDGWkzB27FuULmCEFmuz6+yc9CAaF22yv08gJ/NBiUQoiFG5gJFrMfENRq7BSqxQxwKxFWYlaF+gQpkVAOpEG+DJIzrC7jUvJWYmQtxu95/YgMAkzsrqjJs76zpiVK7FhmpFBMlDvKXjNSGDO+64A7fddht+4Ad+AG3b4td+7dfw4Q9/GA8//DDm5+fTdj/zMz+Df/Ev/kX6fW5uLv07hIBbb70V27dvx1/8xV/g4MGD+Nt/+2+jLEv863/9r9+AU3r5eHxxE/Ye3IrQyOpvZVbhqdGG5JExW1MMQOU0R71YwR0vRKRYcid+I218p9UMyMBLC2kgZw91S9mYMZs92LtqA6XdrQxW9RpiBgYUPmJctGii63LkMfu8shRObS3y7rdAlhYhm3QtJcWdXiNtzP3f0/JZV9SewQWlFX9ouzx8jARv3ZGZxGCN7Ht1d6xixEhp/Mxqv6cfyYCSHQcZECFhNyQfYykt6k3iCUhk50Ha4JBawLUEPyUUy5LOmW1ghJLB5uZaRbSjiDBz8EsugYRU5aOVXlQKe0SNT8wJlxFc6TmktJpDaGUMze+kDb5zioXuzzO4lbLiMNL0T6V9hFaUKVJDuVgy4phBcy3GkxrjqsEL03lctf7QKe/l3fMvAfNAs97h2+ECTI+NEBqPKZD8V7jNxjEbvhsu3I+7n9itrEo2rAqUQ6siVXPStW7dypZYOsgACljSk43ec5K6jGiDaJvGvsFc9vR3xJgra2EuXMTIt4lpWV29AwAFBYx9i4VyiomrRfeCiACHeV8jlpLuqZ3HqHDwFFG5FvNFDUcRE99gQ7UC4GS2I3rCXFkjsIhwKxdQKQMEdKJbA0lDvPXjNQGVL3zhC73ff//3fx9bt27F3XffjQ9+8IPp9bm5OWzfvv2U+/jiF7+Ihx9+GH/2Z3+Gbdu24V3vehf+5b/8l/jlX/5l/NZv/RaqqjrpM7PZDLNZ1hTs+PHXctgpFusR2sVSc+uMaXCo6wJFEXDp1iNYW05f136HeP1BRRTNSV5aCwEXQkFbuUamB2BCayvm1fvLJvW29V3VgBMvFlnxS/oARUw5fjG8UpDCWpEThJUI+pA2Sjx3Ssv1HhxUe6HMD1mZbh7KXJACBWYAtVjXWxqLCu3zwyRlsQpGJB0GlKUYlNXWpJDFxKxtrMJJvTM0n28MSDR9jpVS23HE7tjEoVZEnAmIWOrGomBEn52Sgb4gpbdSlQO4mfxIdY96kbATXUkVQaMgE2urhnxOGBIuGSgjSLUvoZVUmIEoVwZEEmfbpDmqHUJL0nAyb+hr52/dno2tGQdwwfDjgKJsUa+UCFSAZy59Lo6jdF8uImIkTOtSwM/LhE24E6ibsWqN0j2iQmQycJgBkq2jxY7JUWDIxHClNCQMrXi7sJrNURW0wk0vUZDzz/tZdWOg+tyW09/EKJv4gU78mlJCrsXYtxi5Fg27VM3TaiqloIj15Qo2VYsYUStMCHuM0CIWM92HdDmudcwq36WIkFXqnCq2Tk4gJqByajDycgZzQ7z14i+Vazl27BgAYOPGjb3X/+f//J/4H//jf2D79u348R//cfzGb/xGYlXuvPNOXHPNNdi2bVva/iMf+Qg+8YlP4KGHHsL1119/0vd88pOfxG//9m//ZQ4VANBE9UdoBahsOO8Y3rnpcEL45Sv88QzxxsTtj1+O+qUxUEbRD5QxrZZNiwLo6th63qiXh/cRXIpjK7c+MR8ubYOs2gW6H6TGcFJRgrRaB3FiUXpBDBhdHQhUMKgSsGTCWSvxTemQ7LO5o2Y/xYJUAguGsBwKTNhnDIyxHQbGrDybY9e3RUGJra5ZwRX02GLkrpw5rqrGyY/HgJaSKNQSqAG4cGnfgnTUMt5z8v7oG7exaEgigFpBTwSoEfO2MCNQ0uc4YObgVoMUK/9VxoGtfNgznLFAxpBZiskEyrqdOMdy0pykkvQI0eAwpMt1JUCpXinBtRc33LUtqIzwpaQc7Lo2jUfbeoxGDY42E9z33A7Mj2q8Z8vTp7zHk9A6ABx9BwwzQS8c48t73wHvJXXZdVom9fLRsQZALoKcPLdclu60e1H+HlwCYlZplcrkCQAIoXFYIkFys1Bg5FuUqlMxF92GHca+wci1WFtOs7LhDlmNXIMN5TI2Fycwdg1qLnCg3oCVUKayZUcRK6HUz9JJPZNeLhwY20Ynen2IltrRK39wiLdsvG6gEmPEL/7iL+L9738/rr766vT63/ybfxMXXHABduzYgfvvvx+//Mu/jD179uAP//APAQCHDh3qgRQA6fdDh05Nqf7qr/4q/sk/+Sfp9+PHj2PXrl29bVZCiTsevxQ/dtkjL3vMV288hBMrY8RIePeOZzSvOlCHpzNuf/xyhKfn4LwIU2ETU89JFLCOvGat3TQ+y7/rhMVdeaw4WEpex/wVLFLjP2VULAXgNDcfYrfqs+3T9Kv6EACwvimMjEnJRJgAOm8XoHec8jsSA0AtkoiTnaQZuNSuw47TpMZe2AUDHLGVni1i4iXHYWJdc4NlEwyDVOezKt1kqRVLQcTuZdNsyJchq6rKtmeAZlr9Y6mighOzEgsgVhCzPSdiWWqBYpnU9wQCZBiJJQEB3FACLHEUJQXmOX1vfgqT+Rlu2CEgwSbQBw6fh8Un1ykIQNf/x3FWUo20UIFdx6mmiEYRbhS6EnVLH+rYciS0tcd3ann21P5kduWuw7u1DxA6kGhVUnYeBpo9i1+KU5YN0MaPlLRU3DKid8l52EGE40UpQvGm8QjRnyyQZgLDwIq+pGLp2tJCwWN+VGOhmvUEtU3wQCmC2w2FaHGer9f2znMWSxyu1+JIsya9ZuLVlVBh4ms5LwjzMQtFqn56NbESTmbW34y4+8hOsSWgrrfRpvGS6GhcQKn/98RDKfMZjNcNVG677TY8+OCD+PrXv957/Wd/9mfTv6+55hqcd955uPnmm/HYY4/hkksueV3fNRqNMBqdjKgjgM9/78pU2klTj8/edw1uve6BU+/Htbjp/CfTv4c4/WGeJDaZdCt2TZ2QlITaitn5kJgT6fXhkuYCQPLyCAxwZBQlOkdYJhApE1NEWWnbCtXHNIGH6JLHhOldnI/iZmuMhkgFRAdgeg1bNdvzK58nGH19RAItumnU0tyaEpMRgG6CBeQG1/SE8wFtXShb4sTkSpki0zH0vieNDyM1SFn9nDWnVsaqiTQ7F5ftV9NnCAQ37UzXYimvkX4vBRGhxjUMGhOKZQE0rhV/F7Lzz/AT5YdfQFImqisyvSl7AFXEhy7dK2mKVX/Dk6rB8SoK6NUUC/fUscoeKUsWGy/l46N4kidKjC6l0FLVk6aMg/coqxbL0wp/uvedaGcetFyAagFaKGMSghtg4XHsAF+6J+T6ebXJr2uA22IVOBYA4LVQmvQYrUQ3RvG24dp17JF9hwKsnpa6sHONaYKOIBHAMqU+PJEdCgpY66coKZwEVGybuPqeysKYFU9iEOdURDtyLeZ8jXV+BY+vbHn5HbzBYW05nIsofdRUlJQ/FxTTwsjEwmKMF5L7bs4oDXF643UBlZ//+Z/HZz7zGXzta1/Dzp07v++2N954IwBg3759uOSSS7B9+3bcddddvW2ee+45AHhZXcvLhQPwwcv24av3XwE4xo/c8NArfmYAKGcmvvzUZaiflNUXe2Rupdn/7QHtdPXaajWDOrNyJKCQqgRXMEKQlbJoVRwixeQvklbCDIxGrdLrjMAqwHXd8zwEhzY4VD7AO31YFUEcYW2CMh+WdLyrGApA2QFKAs9ea/l8ew1jGghALDNWIg8VzTonzAkDie43i5m8fLhf5qzHkFCAHkfu9aJeNS5jeWLFCEW3jZhYZOeef4UZmBEnvYtpirP5VoCGft41BNfI56KWApu2gqIAIFdD00wChGIl4Icbd5L48qGj2/HUo9sF/I7U/bf1UkZdK5vlZXzlYKQ8mGsHLgE/DigreS6E1iV9Ulc1hJ7omIHkVxNaB8w8qNYS6oKBonMEBgBUEeWkSamaGFRYWzvExiN6hhs1KAoC0CJ632fLgKzyTUuSjd2LnfdON9icGBm5Rh2D44oIXwaUZUDhBZa00WHWFr3y/pYdZrHAk9NNJ1/0Vxkj16JkASaWxhm7BnOu1p/T62vy7q1P49uHdqfiiUZBVIgOzjMuW3vkpM+kaqQBpJzReE1AhZnxj/7RP8KnP/1pfPWrX8VFF130ip+59957AQDnnXceAOCmm27Cv/pX/wqHDx/G1q1bAQC33347FhYWcOWVV77GwxcL8Q+/60EAOOs1Ji/WczjejNEEj03jpVOWOL6V4u4jO/H8Q1uQRJpQJqW3qtSJVL088ry6VLz4JKwN0J4jTprgcQQi+6Q9EZ+TU3deBURf0lnWd4wLWqAt5ZGUbMPNgt40DWz7kX5AfToAfcCVqHucDFCIYVpC15CAlQiEMTrwFlTLwDpZNw5RGwMmJ04Sjw3RpXSeL3mqCUCXljLwlL/vWEz0SgY3BBeBYkWMtdgDXFLn8NoS3NQp28IJhSQ9Y0pp6FCwmqfpUMm5AI5s8hR/kjAWzZDZ6VPNqd8PMRA8EEayrWuA4sUCn33watx69YO9YU2TsQJEagl+JoAIrOBrrGDF6fZVRDlXi5EfA6H1iMq0rAYn6TqTpFCaxgtIWPFwUyc6G2MJ9bql+8bJ/ZS0V05zYqqtCd6pyFX7GRVSYp1MBWH3Kqd/hyDXJqaeSXI9GHof5VVauXiXkByM69Yjslzv4FxybrV0axv9636mroSql77ZPjqGOVdj5BrsWd7+pk38X9x3BZrlEtWa+iS7AvmJ6fzMNK6NDl4N6YY4O+M1AZXbbrsNf/AHf4A//uM/xtq1a5OmZN26dZhMJnjsscfwB3/wB/jYxz6GTZs24f7778c//sf/GB/84Adx7bXXAgA+/OEP48orr8Tf+lt/C//23/5bHDp0CL/+67+O22677ZTpnVcTZztAySM5N74NEPr1mw/gm+8ocHzPxiQKZKfzpNLUVIoJWLJYBzo7dtUKpGobIL3mHCOo06e93nXGzRaX1H9QkRqgpfSNYwSW6q9lLXVudcUbs+oY2ZlMhN5HBD7FY80m8RyopAPXHwMJ0RgMef2aH96L795/SSoRpqA6CvVciY3LdCLyzV4ntJ71evou7qebsjHvNU8sVCdRsQCFAPzQR+9Ljea++N1rgFHo+usUndkaBWVKnGhSupQDUlrLz7pxsO0BZTjsp+h6+lDbgbeU/ihZqnSCl0xU2//bKVyUKqFK2BRufTqGBIQTSLNxAFwVsHZ+CmbC8rQSkGINE227IuKjV/eZ2iOzeXx3/y6k1B/QS5eJa28H0CI5hMJ3LsPpnmAQO3BWfWhl9kSMFuq/kt9GNiZRwbRd/zwMtFmsFlBDJuk2ZPewzgSOGJEYnoRReaOM0kauQUkBJb16ncrriXZWADMHrEHnYKvAjsjaDKi5HHU9j0a+xbMrC9gxeX0VpUO8ufGagMrv/u7vAgA+9KEP9V7/vd/7Pfydv/N3UFUV/uzP/gz/4T/8BywtLWHXrl34iZ/4Cfz6r/962tZ7j8985jP4xCc+gZtuugnz8/P4+Mc/3vNdORvic49cBZ7Jav2Wqx95Q1JGdfSYK2pcvOaFN+AIz/6474UdOPb4BvFHgT5PtXoFhYAUV4p1twkXWVMVzkkpstNUDHtKLAigYMRFgMwmW0EM0JsMus+wNh0kYWFUC2MahNB6zHSSsIfbj73zYXz+nmv6AEAnCEDOpcegZNUqiEisiGyrrwfxF7noxqdxyUJHNTuwCD51VR7L2K3MTYPlu27MYgYWu/1bhZCBkR5rpf+3CduRpnI0ReFEvBprjx/8f+5L93qEVvkAKnA1sKllsay+KYWUH9t3URCw4WYEr+y+TeSmOUnMgzb7M2Dn2i51FL1sIwBJgFosO0BqcfnCYcQLCY8/tVWdc11X/UqMaAJevQ6cBMbArCmlEWWQNEzqxWTXNxC+8PCV+NiVHVhxJrYmBo2D4DC73nruiVEBpIKqIcRSq54g9ypXMZXlx8ahiZRSUGIW2N3PlLEDUMYvprQnOjbOrnEPmHX3Q2wc6salFJD3EY5kUfFmMgpPrWx+0/b92fuvwbp7K4QJUGxkNJsbjEYNChfRBK8eM8qqqmB25EPPEbdy4gszxNkZrzn18/1i165dJ7nSniouuOACfO5zn3stX33awxcRrTVge4Ni+/jEG7avszn2Ht+CvQ+fLw9JK53NnFdRxKyDMboVYV7NE8UWnkiqHbyLiE476GokkWDrwIiAJwUvnO3PzNoygEMsk7WZyymYYSbceN7+k0GpVb8EaXIWk1Uq+mmfzBiNckbF0iBBJu9imfDs53cjfpRw+cLh9DWuRdf4rooQ99Yu9ZTOKRACIJ2LoZNekR0LIfvu7DyYkp9M6n2UTXSx5MSkyEuMH3vvffj8vdfItSo52dGzl3QVRRG8UttV8ZhwFgDCRA7ZtfKeub2ma6hAj6IwMBSAD/x/vwsA+OqfvFuEsVHGLUUgHJ6twd1P7EasfceAMGlpdVZlwwTXsgxHCfAkKMAUUNw0HkWB1BAyTex2LwaS8uIsNldLuH7307j36Z3Su6gk8UhR7U0q99bbhLSEOjZe2UNLAdnfhGiuvBoW1nWRTNtskCxt0bZe0kKNalOsNBuAdYDO+1p15eRS/sytHGskD6wBmNt0rc+1iCA4MMr5GivbSsQSCGukcis1J1RG1jnpCj0q2ySgtcaMhbN2AG8u2zPE64+h18/LxEe+T5nzEN8/Llk4gvoKLwJHexivXuVHZTN8RCSXjNc4Wm8dgNkn4WDhQ0cM6IPeykg5X2HTyQ9c6yjcNe2TcmZWq3FyXfPBk8LZwejvCRShYzHyFEtezpuBGNNg+LprwLd6cvjwB+/FF751XWf8pnqZBJbziaiVGZy8VJgQA+xcVzJt+a+UjqEst4ZU/ZSnBbjivqV7GkCo9XyXqgI0JcMZSLHzz/7dTqQk3KnYtOuELYyJpQRBSGAusFRcfODH78Edn78+lRTb9/pFj28/eAloTjxPGO6k8mNJH2n5NBN8gDBC6kMSZx5cF6hrj6aMyuTpuOh+usoupGoYQLRm9+zf1aWK8mus4t1YIgPiSADITAA7oz7rih0wHjVog0NTF2q5393rVnEWgkOoHVA78Y+xe0PNAAF03alVZEuApOsogsxMzzHKqsUHdj5+ToKUbzx7EZbv34BmYwTWNqALpyBlX73aFTQs6Tav6Z2qCKh8wKhok7GddHeWCqChH9DZGwNQGeINiQhpYPb00gZ87+FdAh6ShbtulJ6HOqlYHj09wIUOMJOvZEEPWQ0xE6JzqW+Kcyps1W7HPXbGVJyZGNHlgttkZ07aTTd0RmpZ3HrdA/js3dep5kDEdynFkjEoAHpOo+yk541pO1zdiWcB9RqBmGtZfPnL7wLmRW/h1DWXgwMHn9ihpHMJMvmQh5TRqqCWfASbY2sah+7/qazbAEIAEJ1a3xO+8Znr8KG/+t3+5MWk+2W44DotrbEFIW2G5Hdi/2dlUUaMWBpg09PxHesQC0a9IP/+6p++S7QtBKBAAkGszJyVKVfjBsyEOpRZbkdxVj732lBYWqcA0Dr4RREHc+UEiBnTZ+MTFCRG4At3XSfXfhJQjOSEk9+Jtg6Ak/NMGiwAJpwGBDs6x32vFAYYTlKPddZLSpkxwTeUmmFypNTBGiE7V71+rCX/+QKBNc0FJlARUWjVj/XuOVciB4vb1p7A/ncW2Di/glJLigEBuW3waINLlUYCVroeYgJOxH23cBGbq6UzdUpDvMoYgMoQrztskj3WTPCthy7pr+5Wsyj5itv1J88UNhmrLoL0od5q35Y2OrStVEOY/0T6eCuW8dDPOdj+lWa3KhljD/KKDl3hJu3J6lDRI1jBigNSN0B0k0ovdPJwtaR6/FQn5ExEeuCru/BsuytVuBQTIEwoHR959ISRbGkJyKSbzqUVl1c4AGOd0VtNfzhKLqjkslSbAbrWwU2dMh4CoABgpv+ICrZ46uFql4SubPoRTXWwrv4NwBioyC+t07QQF/p50/hAxi/MR7G1X/TSWTnK+drhsle9SRnhyoBRJWWv9VLVCVjVJC8yYe7ql/D+85+AA+Nzd70LxQmptOEyc7hLPx1bRZ4FmLkOUKQWD60Dj0LPWPLeF87Hwe9tFeZl1HVHtvuAI0QwTOrTYj2IkoOuCG4bFF2nbSvk0vs/RV7B4wEGdx2gg7weRujAio1zISyd9xE/dMHj5yR7cGhlLe59YheKKmB+boatC4tYGE3hIOXUbXQILJ5I0rfr5L9nY1gq10qvoEGXck7EAFSGeF3RsMPXn74YADBdqU5+6FsFTA5UFLxQDmAgjEAbs54ophuJJCtNWPpGQEqMDk4boMkOqK8PgXz36qbBBFH8t0UQIaKtwnXy5kCYRd/TqMxigZ7mg1btEOgmJX0tsSkmDjUWxatfipdtzBLemIVYsEzk2t8nGLhQp1oA3e8msjWWBQpeZlIF4lccqBGhaqwAplUmcZGARnrzuDpjeioWl+e7ruzEwJoNotbGSlkUE5CaqRhRL9NEDLgA0IySMy0YaNdIWfLqKiFqnZrPKY7ScUkiXA/wKILGAb4MaFov3aQ1xZEuGwFcMlYeWY9v4CJct+2AeqoAbsUhep/GXY6Vu5RV48CBgQoJIKYKrILhVoEUQASabC0F9H5InZ/t3vGdIDYNkP1fvzcCcEUEOSioFs8Va+TY/1Lx1LEKJusNBRXpouos+e2a33TxE1hfruBcjXXVFJftPIxJ0aDyAjRKFxBYDOva6FBHccAN0SUNixm5FRRR+RabR0vnZLrr7RwDUBnidYcIEaP234ndxJ8zKlnkZcem3zDzMuiKnMqg+XT5DLdO2HXHKIqYqniszwsAaWxo5cxO92MrfN1/gENRBHlgFQGt892K374rEr6x7xK8/9LHUsn7lx++op/esYmndV2pb+6XQgJSEKW/jV8hYQcIiKNOSMoOCJ5BZZcqSRN36HoJJQt0A2I6bggAGgKrvTp7BmspswlKfS0Az6psGC6JmOUgZH9cMCIpE1Ey7vjOlbo9dzb/BVLVj5UxO9VCiFFddvypNFcAipVhWwrENVINFAtGrFi1JNZ1uWNo7PoY4xS1nUA1V2NuXGNalwiNog0vDqu0Cgu039qA+5Y3YK4U8a+fAuy8pkSQjNCojOCZk9YAxgxpiiedl7J4K6HsMRKjohWRrmlCVpeJQ9gTcZH13b1kADTdP67XKFNccl0HZgplekwbBaTrlKcfqYxwVegkUkyn1l+dI2G8aUERG8bLqFzbt6Qgec85a5XRgTprjjhyqksZAMo5GQNQGeI1xfF2JG6OTKmLL6BCP0srGJtxCmGrrO7kPfMysT4mqTQ4UudEm+lUvIuid1BWhSEPIlcITQ9IeiQEB2JNDWkZcgwOTVMAZdtP8awq+wQBdz5xMchFsaw3kaatuCNAwSm13mdTbHJmYxygE7ySRJN3v4CXDi6gOlJ0849qGCjq1wedqKMwTWQVMrbab7kDI5HAcwG+ClJtPPVp0iNATM8UZATfYRx21E2iRInhkc7FsUuBREpeJNKDR9MhxgBVmRYCgNnnO0D7AeihO7XC92qb7zhV8VgKycCNgYfVOo/ckya0HtO6RGPdo70et7U8UN0Ge0IYC6tjPYf8ipx7Yrb0e/KJnNSVlhtJ9yXAREDbeHz54Stw6zVdm47LFw6j2eXx1P7NMlZ23wfdufrigEjYGgOLVqLNUjEEx/jo9Q8jgvBn+y7PDsjSQVIdxJGl8iyxMjZOJJVsesORNlVkIDXvPFUcbSYAAEcx2d0DZ4eLdwSlxoYFRawrV07ZNblyLdroMdNWAPZZAJIWCtWQ5jmH45wGKm51dcIQb1ocbSaITPjmYxehKAOqUYvCx9TMS4SohZikWZwKpxCrvXgmGlSqW4SGQNYSMO0nRrG9jtrROAbJ47P6oMXYTSwgYVlIvy+0TjUolDoxc54uMnMxnXSZCc5SJNqzhZVJMddUhlrYOwZBJgib4B3LxBR2TvGDlzyGhULMRF6s53Dns+u6CVJTI6lSpOA02aB1mtGKXbpFNSeAsBhYaPGxq8Sh9fHFTXhk7/mJ/o8lgDHSsfePmbQZJLSfjoKN1BWZgcb1mA4KBMx8Gt/URFH1GMbg+BmlbfJ5kQtJsaRbQtOCLuuynD7nutSRAAX0QIvY3JddqjC7T0TEDdESlYzRdUfxnu1PY+IbfPH2d6M6JmMomDIDFFHPzQmwRYSUHFtEgGsHN2nhxidPeGTiceaTGLaUwsq0IindaP4eLbKTBMqqRVMXSfcD3bU5BUv7BO7YvjyVFMQvJaW29F4/3oyxvlo5iVX4i+9eDh5FuHGLctRi/ZoVEDFu2PzMSef5RobpoAwgvRzbUVDELHoE9ogsoKV0UqUzcTVGrkXDAlKKGFCrUd3Anrx14pwGKktthXVn+iDewDjaTNCyw8Zq+Yz/kR2erYEjTsfynWd2oV6uQNpe3kr+vDEqrEAg+vRgtDJjAMj1KgkkACDfGbtZSicBmNhV8kTPaFtd2QIoR62405ogkfNSTYCDS+y4dRMGSydaaCWAUegUdBXsCBxZmCETrXpNaSVbe2WBjG23+ci0Grp6pgCUj4/xDb4E79x1CI4YD+zZheKoR6iknJiablIHdDK3qpMI6WNkqso0D+lKfBxx61WdjbwjTqkESeVkbAWyiVLHNZ1EMgpD970qoO10KBlDVAqgYgUq9hlpCQBY+5ZY5tMuIdIq0KdsgjObe3THyYaH8v5CClryNJ2xcawfTDbyXitdSmDle+txZ+uxa8NRNWJDz9pfGC3qjy1UDBuy7ySAwfjoFQ8jj1kssNRWaIIXQz5E9TbRfZnrshkZFtJzSvQnEDbIi47IztWB8UO7HseX913eTwmmdCB3nbgTUEFXlcYEDl7unUy8/tDenVh/1Qrq6JNA15G4/o7XzVCVLSZVg3HRJjv9NzP2HtuCcdFgTTl7xeqbuNrNOwIT36QGhwAwjWViVByx/vtlBPJDnFNxTgOVFipAewsg56PNBHcf2IV6VuCdOw9h9/xLp/28nllenwRo9+3bBTjGh696GI4Y7zr/AL7z5AWdY2xW8uddRMUQMyo19gLQFw9qdKWXoinxRURZtSCSlE3SoMTOdZMBjMcNgnY+JQJuvvBRrIQSX3/qYngfEQMjaBdfeTBz59pp2g4gPcSSxsWOVVeiVnEUNR2V9AARCmoUw7QAk1bm2OuhAzGxBNq1Ef7gGPueuBDsAV+pzsNSDdZSBpxSPynFBGTaCOSzvoyd749t5Vr4SUA44bqJ1XESdhpISKmq/JwyTUViV3KGw1bmatbGle7PZQequpJY9jN+qUJImRJiGyfuKopVeAxjCfJTjQRirfxpCMHAiep4SEvOWdNYsP3bYRUMvn8Bz04XUBpzBsWbWToPpuOJ0mwwpWtYj7849d/igeV12PPMNvk6SyMGoz3kOokXiktl5FF7WpGCSy7UC2ZVhNprOXJ3zRjCtCU9TOaAC0COPd0rWq1k5xeB51bWYt/e8wQkQ4HxOOJHLtx72p43L9ZzcCQ9dprosdiMUPmAFQUcwtLGlOIx5tyh62Y88i3m/Uy0J66BB6OkgDkn4zh2DQ7M1mM2AJW3RJzTQKWigCZWZ0Uu9S8bDz2/Ha0KAx/efx62vGMR8/qHezpi//IGPPDQbilFLZWi9oznp2tQ+YD7D+5QQNFpPyIDpZMOpOOyRd0WCK2UCPZVjRlAMYrabNgNNIB7OgEOLlHvfqHGh3btw12Hd2PaFJgfdw+0NXNTsUH3AdGTeo5k37Nq0udACNFrs8FVwkfbXleuLp+cCOi83U2L0QGe1DnYzve8KT52+cP44r4rwPvmkHzUQpbKcKwYyhxNJRVinZQTA5KBFDJhpI7vLBZ4broWDoyN6xfx/PENWqpLmY08EnPCtk/VuMCYE4de5YqIbPV79NySVkNLgeEoudySToaxyvZh7IjrRMSIIi6WTtjcG9fkkWLjaKLcIN2d4YA4lm7DeR20pUPYcfJKsVSSdYNuPHUeLtpfyKz784aC5n1DeQURWamvnMNKKPHk4kaMfIsjy/MikLX7PS/9zoL1PFhu3D7QJIiHCxP2L2/A7rmX5PWlotttpmkxcTVlbEpvX7Z9GlskpmzfnvPkcw6ghRpOtWFvJkg5Us8n3YgjxkOHt4vItZCKndJ5NDFg1q6HdxFj32DsW8wXNRxFaY6o1T0jrfSpnBi2RRCaWEjndHZJlzKNZVcVOMQ5H+c0UBnpDftWiHWTKZanFZj9GeGHHnh0F9zMCUixBxwxHnz2PIzHDcaV8PNimiSfidmBemKUPqDxvhOr6kOSI4FsUtfXE9vClAzcWB/yrKtcUlOrD1/2PQDAe7Y+jQdfPA/XbnwWgIj9rt1yEHcd2J2+J5mxMboVv+vEvXn5s4lJ5TB0Ejamxdw9PUvrCEbSh9izX9ID3SAQRLsR1gZ4x7jr8G40JyqMUopBzhcFq5hTWQ6bIJXhIfMDMSbI8hS60gcB3Do8cmwbTsxGeP7Z9VK10nTGbXZAeUffPCio1Xy0dItO3EDHpmyeJe1PdbDsCYvZk8g6Sk7sRPToNR2MFXffb9fTwlIXejkIL88oGYvlVwixdGjJq54GSb+Rp0isM7VVETEBYcTK2mSUCkkKzjUiXo76OqkVPkwDZSXS5HD3kZ148fg88Og8mgUGj2JXhmz7tXPTa8iELsUYO9DDp6jGeeDRXdj9LgEqPNeiOFz1r4+nLj1o45jrYWDsEgT8uGy7xFrJ/29+x6OnZZH3zIn1eGlJBLupGg9AiAQiJ+L86BQoMlr2iAjKfgq4mbi+70sbPdrosYTX18h2iHMrzmmg8laKqzccxAtLc1hpfb/D6mmK+U3LWArz8os94AjwnjEqAuarulPTayVBsPboKqj1RsOn1I+2pjdcoCkZax5oIY32XF+fYlqQTCzpwAmkNOzw+InNaILHbCYCu5SvTxoMyMMvX1kCIB/hSiDUrksB2deQMAbsZfIiNVxjJ/t2SUxrB4/ewz9uanDrVQ/inhfOx+H7tmFynBArgBTVyWKYgCoqa6KfC9Q5ttrkq7oG+O74kq4lejzx0A4BNZXqNEzs25KKZKGTrQCtpGFQ4OBqAwr9+63aNEXbeHz0ctFjzGKBr++/rpeeiizJiuiEeUnnonb6aWK1STqlkmTAXFBgYKwL67b5ZFoAsCaFbAAEcFOn9v28isnotqMItGtiAhLuRAE/k+olKa0GYiotl3FzkZKPi2vMOwVwTFL6PSMc/eY2FA2wvLuFm29QjVqE1qOd+WTWxo3rroNDsuWnxEw5YYUMNJtWyoAgpCP8X3nnHnz92WsEqDDpodpCAqkyK92DhtCVrYPXijjTjOkdONqwIi65b0AxwvF2hKP1XErLmF+JRWTCzrVHMWsLzNp+zyRLGxfae8ccY43diSBN/wxFE2/3GIDKWRT5CuuJ45tw+frn+n4Bb2J8aNc+fO7EVVI546CeJNrFWNug52K2yISQcsjyf7Pk7sSyses/Aih7IA+jzjFWgIp1Ts6txS3ue2EHrt90oHe8dSyw7/HtIlb0DGcln6RshFHinLEoClistwoXQKwVyaSFtlbxsOgJREyLNAmarsV6BSYNB3HHggC4ftMB3H7hGvDDa5CExDpZJdpfhY5cslQxmecJsu9y+sFs1e421eDnR13Kpaau5Nhe0y+U06Y0GYOE0cnTBhSy8y8YGxeWTq74sPM34ANlOkBwWQ8hdkidmU2AK0ZxlBguasT8LVZAmHD3OUbXSyiZsaFv+kZyfhwJ1NgNlI2tgbUA8JqA6y99Cjsmx/HZ+66Ba0rEkuGtOmvWFyq7oCDFPu9UBGz3lDIzs0tmuPWdXTflPce34rEDW1Q7g94+oWkjSdlpaqrRqTjXcJleiIH7X9wB7yKmbYFQ6TgYM0UZ4HyZoIzFYXJ94W0E3rvrqVSJ9krRsMNTixvRRI+CYhLZRpYqvBdX5nBscYyiiBiVLeZGNeZKqbiJkJLoWVukITnVUZOCE1v05L4pDt19P8TbNwagchbFlrWLWBpVYCYs1dVp+96Hjm7HtC1SvxioyM/SM5EJdfSJOXFgtHCAumfaNikYImRVAEBWwksngxSpvnEKDKhL/RBSKuLZxzf3gEoE4dGjW8SoizKmRkttjdHp2JU8qGssnIlsu/Om9L0cSYBC0tUIKEkVP/k8M46g7TUW5roJwPuIYGXAltLQSZ0iIRXrqg9IDB0QtCoi1lX6hq3HMWsKxOhww/lP45sHr+i2YyQWpZ8uIWWr9PdG/FWs63JP+2KTfwsc3rMFcfOBvm5BQUKsxMaeFFS4FkDQNJDpaswltqV+KkiZAIpi+GaiY0DLlE0r4yEpEkL3efvukfxwwZKiWXGdFsfIBq3sGT9Z4YlNm7Bjchxg0apQBpxdUCCk7JNrOmfdBJqK7vvhGO0C42MZSMkjea8o8EtpVIcOpGg1F9yq+9IBKOSOePqJLcJqBgLmQ7rGXDDmti6lv5uVlQrxpVGfEVSAK2kmddkVGq8Dm68h6ljgsUNbECOhrFpUVQsCxBW4kQo/57vFFAHwJCyJgZngIloXka9a7HA7NrbPwkSmlJZ6KxRLDPGXiwGonEVx1fpDp+27Hl/chJemEzATnju4HqjFxCyf/I0pCZHQBN+tplYtcZqo/TVa3zX2Y6SqDAC9dBarhoX1dWFTkAABOQZGQRoHUgcU7j6yU1ZcTDh0aH0CKDZB+SKiLbOlN9CxGeYC2ghqSI9Fo9HRfX+y/7dNHMtx2KSWP/QtPQNg47olvHfrfjy5tBH7Dm/G7KUxSo80yedaCgqawijU8lzFrKkTcUCqtgED7zvvyXQ8L9ZzSfSc3HVj5yuTL11Fi2JsgZ5fKRqZWHI6tnS6sWNC/uyJd8jXm66mMN2JABSnrImlvay6xzXip2KW++zluxyo08BaeXJDChIgbrWlVg4RJQM8M2xr54AwF4FSdSGh6N63y52XiGfz28btx/DiwXWgFS++MGZlYsDIawftKGkeSuyU6qvQje23nrsAN257Ku17w2gZ47kaKy9NQLW0LsgN7EhFx8b4GHBI2F7Be7re6YPoGCzH2LzjWO979xzfin3Hz+vpeqx6zcqr7dogAtRIi4JXKtmNIHzr0G4sjGdglvRtNQqYjGrMVQ1KH7BUV5gWRdKjWVdyl/3Y4iVVBhYBIU/l6iluGC2jcv1y6GLV70O8vWMAKmdhPPjSeamM9soNh96wFcXji5vw3OIaOAKOHp9DOy00lUEpbZLSI8aEkExUgQkFZ2wEa7PA6FC34stg5cUAEpPBXh70gE4M0XWpFIL8xyYIRrKMF3DAidq/89AFePHQOliTPldomskEi14ejmSupnYchK7JXFBn10idBb6lDfJcf1ai25U4Q9JCrtM5ADLhxTFjzXmLaZyfPb4AfG8NKi8C004nQt1x2QTourGSdEk3wVJAqkzJY+Ib0IVL4ANzCZQIIyLXjol6fY5MpJsa/KnQFYWKXRnaY5FS2uZLj78D7pE1NoRStZMxHFCw0aVluDuWALgZMqGuTvg1J/BhYI1agEcy8L5GKqwyIz8bLzaGrYwgdc9NAuiAtFhPqZ/YfRYAbtr+FD730lVALUZoFCiBEWGuKJ1Lwgk2hpbqIwABOPLMeiADDFtHi1iYm2L2zJrEDHVjDm2k2N2PAFK1lZwThEGxrsixE0SnhpKj0AMpALBpvIT9G6ZojohQlR2Dofdo/siwQdXxvOfg+SiUBbHNZrMS3kt7iXHZ4sUja7G8RoSq1hw0RCfC1kKErd5F1K1PrKrt05oBhth5n3hiTMom6dui6tEKF7F9fAJDDPH9YgAqZ0nsPb4FS42ke54/tiaVAe/1W+BJUiyXLTz/l/qO5xbX4MWDNtkDlupIuQwFKaBuhXSqyEHKrCnQhI5JcTngySZmSZV02hHOJmfOvCDYVptAemiDgRcPrNdcAQGV+K8wk1QOOMaWDSfw/IsL3XeaTsNlHYNNSJobiUEmNldTmsTJo8vrW1GETuRMxg5lzFHJ+OGdj6X9eSfsQ1oRm7BVV+YmSuVilWmaEkQJPLW6Gi+7g10JJb7y6DuASPANdYyIWadr2q4DP0jbpJRaspznTidhl6AWF9+wfx485k7zwoCfEohJXGlt4jYmw9gCFen6Wj4TxugxVK41p1vA1zLeYYw0Bm4mICVU6Hr8aJ+hWCI19+NAMO+T7gZDsv035uLYU+vw+MImXLzmBWV3GFwQ0HRsjbgpc4/BAiGVibMBTavGGp2sGwvRJabGPHUMzIIZwVPP8M5Yn8gEzs3VGF2KyO5ZArh1uPPQBbhpewdWNldL2LJuEc8empNz9xlgTH/jSPompghEwsqhNf0qNwaoJjRq4rc4aVFOGunhxUDUhqHGkFQuwJVdFZ+xLolJgdwnQKdfcz6kf1tKCMBgaz/Eq4oBqJzBeHZlASeaMdrocGRxHm3r4VzEaNRIzw0fcWI2AhGjDR4Pxe1/qfSQS4yJ/C5kRTbp6mukRm6WC18NWKIyLE0QsNKo/4v1/XGeEcxoyvYLZSQUwEgvG9dr5JYqUixdY8DJji8alSzHWBYtdmw7DgfGutEKnnt+HQDAr2mxbdMxvHhiHtMXJgCrYyhW7xtpv5aCiJDltD1o2bOs1hPzgpRnsBW/X3T43MNXyWuOEZcLlLp/Az+9MuGsfDixObYC132SbkcegJc0TAwObeNRPTEGSLsi2xAF0uaESNU+Sd9h32XYxSb4MtMW2HtlVJ8SLR8NVq5LoJbha0rghYz5yMBV6l+TnU/uj+L0s5LqYcSCEMakTAbDzwAuKBnHGVuSi2jTRFxExMLBeeqqkYjh7D5hYHLI43vYhe8tnAde9sIiFSyNLxV8ularusDZMXd6HGivonReAA5N1+L+Z86HsY/1cgnn5f5xTFrlpaCp6FialO5JwArSLkEFvmQmbhYmsG4FrH9xaSwVOyp0ny5XCUgyqPtz6ZNwiT1M3+9l/DiQfL+mfVHGJPZeXTodo/zdt+ySrsRFSaOaPUHhYtKopM+t0rF5Egt8ABj79qQmj0MMsToGoHKG4tB0LZ5bXoupCiQLF1GOAgovynpCtxqB/vvYyhhY/5f84qQEzVmN/vupy3EGUlgFbg7diihqSfFqIEMk/UxS2kRp+vwZzZGAhiRvbn4euupMRmOZB0diSJQxcE472TYlLl53BN89uCtpVsaTGtdvOoC7eScOHZkAEVizfgU7Fo7j8ec2oz1eCauioCP5lwBJu2ATSy+PZMJV/YklY/OVR3BsaQJ+ZE0CJd5Wsna+LvMTsdDJxdWum7QMDGX/pwBwBOpDokvxDWl/HSWOCk6rd1JdC2vVFiMzfcsOKYEIXbH30kQFg3zIulBLm4K28cDMIS65VBUDFq1KstsnqYqxY3At1GBNdR8JoACuYfn3lOHHChILBQ35JMvCeriW4GogNg40Dgl8cSFgx76bGPAeYs2vLsmjIx7xhEMYM6KyRLE0w0EteQ7oxiv/flp1PATQzOHuvRfCv1gk0OfseIy9ckhl5ek1w6eZwDjpiRQ0JQM6S6vZvUICYNrnhD3hMnZl5nrv0OYZdmw+CkeM/Qc3AsdKEEj0Vfm95xlUBfgyIgZN5zaSa6PsBxBAZM1CiYQ5WmlLFBTlGaAp6sLKjLVEWUqNc7DisFCtIA/r7zPoUYZ4pRiAyhmK5bZCiA6lj4D1zlHq1Cb+nCpFdCkH/Hrjkg1HsDStsPLSpJuNtUQWAPpPZCRfkxilb07QVVLQ1wGZzIoiptUXM4FKefCYM2Te84ehVHv2YzS4NFnTL3dd8zapRiJZjgNAJITWwTmHI8fncXw6wspSlVaSK0sV/nTvO0WDo7FmPMNlC89jbTXF3fsugDsqzWiSRiOrBkkgJTEuyGaD7ESY8J4tT2PvaAv2t2u7Kg992wSyXHDnwhoBLpDM7JL7qu4vsQi6E9dm2gmdRJPLbX7Aib6RsZNOxdzt0zQbBBG11g5Rzymdq2ft5cQoyoC58QxrRzVOzCqszCpMlyoEFIi104ofgl9RV10dM9f0NTbFCpLpWhIRmzcKJP1TLEv6hwugWaPOvMqQpJ5ANVBGQhg78Hw3PlChLjHURE2qmqiwFISAOasuopnNwPJ9bIJTY4kyNiaxXaYlItUcAXDHiwQkaPU8a0AF3Accq97fcflhjIo2VdJFEB578PxOoE3d/QRAG2DqtXJIKR3aOsPOLS9h82Qx6T2efWEdQqy6MuYc9NviIz8mlvdy12MAmoKW77X+XlambOXHURcrxqTkIGVNOUsWCyPfDhU8Q7yuGIDKGYrzJselz0VdCY2agRRH0mrdW4mfCdJcxENHX3/6Z3O1hFHZYsUmXgfpMmy0sFXpkJQMB0QQdU/ZyAVKb2WH/bbx3QpMRXosVLGxKmnLHAxlqR1LD3DJOmGqNwqACO2FwhAqvCVxJ9VYOjEWMGMP4OAQF7VJna5mn3tuPfZWAlaIZMXdVVloBYyCAQqUJDZEommwZm+5vfoF1x/AM8vr8eRf7EI5k4kv2sTkWLQcldDpSTeS+5esLp0mZUHQTZqswhKzoJcqEgUFAUBDPaqf7DpqlU+vCkbLf2OUChxqXWcK5636SJpLto1HXRRoylZkTMRwBSNUsZMBRQDwCpw6kOVqaEsA7pieVeW4BiYsBST3gJ6Dpnui19W9MjdogGKF0EyLZGfPXsSjaAGqO1DGCryYkZWGK4Hhs9swAagMoFh6igjR0j7Q/agAmSOnNE0Sh3e3c/9HX1/N1ly2/vmT2mS4qxmP3bszHVvSnOS/2w71vcncDFdvOHjSvZTOzzP8KIj7butgRnOJUTXQ4wBSS/0rtx/Co0e2aidxRuEDqiJgrmywtppirqgxDSWO0xizUKByAZUPKKivRaljgUm5ctr8oIZ4a8YAVM5QTHyT8rR5H4zKBcn1UkThxEZ6GkpZiRRAE/z32+0rRg9cOAEDTgGR9d5JbHR0aBuZuIJzKq4LvYqBmE22LitpdurDwklXYvkSJxOtZyBImid6CBDwDJTcucEagUHo9mVgpXGicyVI356WlIVZVfmjKQle9jhej/C1AxeDjpby7I9IZcA2GV187QE8efdOEUbKRZFWASxsgZ/KpLb7g/tx2cLz2HN8K+YOEla2M3a9/xl4ijhwbB2WDqxVJkVzSkxpgpDjoj6bYqkBj1R50+lXdFK2VXpUMBMA8uj3vlFMRK24v/akOfq703QXZzbxIEKr1VMcPWIEllqHGAnOMdo272cD+ZISaBeCpO5Ux+JqGZ9YKFAKrGCpOwf2lupBN8FbV+MoVUvsgbYCqIEAQwLCSIdqxYlupYiis3AEF11K9awGBCbK5SQE7hhEAQIdC8RK3LmstNrKi1MYGHHoGAuy+4kA5mS6lgTSKrLdfvVhrB9LCuRUuoxLFo5gH+3sA52eMZzeP/ZX6vopYot37TyA70wvBBalz4AJqcmqiOxHB/+aS56Fo5jSOBurZRRbI/Yc2QrvIkofUWpqZ+xbLBQzrClqrC1mqZHpqY4DQGouOMQQrzcGoHIGI//D9sQY+RZrq6mo6omT0Vqhjo2lD5g5uWQRhIdf2o6Rb19TNdB12w7g280FmB4bZfSyPmQ0pSMgRct+nRyHdC0W0aF3seeHkItuk0utj3AuSn482040ESr8NDM0iqmaAwDySqCEq1Tgy5wzK1mJsX4OuYgEwoCMzlvGO7cdwsOHtqM+PJfKZgFg+1WHsXWuK4/cPjmBJ3lnl2ZRDQAHmfhdLWZlj9+9C5f9yPPYPf8S4v+HMCkaXDj/IgBg2pZYLOc7N9mIjk0xdiNV0+RLbsDs+i/54JN44o4L9b3sB5pOUpErW7UKc1dRA/tOdGks3U+axI3YIQECvpYX2sILSxFkfFciSQrOrp+CJ9ZrkpvkCZuUpZys07QBMU+pGio5v1pFE0NBE/XTJSwMTSyBdo4R5mLnPOwJOdDx067SJu+l1LUS0Fup6Sq8cpDKylgY++MCwA2lQYzQ8mqm7lrkfX5McEuUsFx15TFcsOGllN7ZNjn+yuxCzvZkzRDTfW6pIbMAOMUuto4W4aqASGJBEBuXOjmTOilbOT8RYefc0ZP2sXm0hPE2MVo0PYkjTgssBx5EsEOclhiAyhmM8+eOYhYKLNaV2NQXLca+xci1iCDMglyeggIixJPAgbHn+FY0wWPaFlJ1ww6PHhOa9iQKeFUsFDNUZYuprzpgoJFASug0KN2b/de8Y8TIgI8nCX9TqaLTyStCe/hk21hjNpunbSLW1AX0M+Q1NUXQnnxRwYowKNbLhNl1VUFqSw/VTngfsWNyHA/G88RW3Et1CBjYOFkW59LVQR1JYczOVR/Yh8hyHayfycQ3eOe65wAA+05sxp5Hz5dUT9bnBhkgIaaulDcfYwaueveTqFyLyIQdk+OofiRgz1cuEfCh1vc2uZo40pgSCoRiRczduECvcR17IBQMR8J4pJktAz8CCAhuWRtTMqRMLIiNPAoGVbEHtmyVniplCmErYuPE1oT6KZ9YCCsiehLAOcBPRacSKkaoFKQUWboG6AEBriTtkibxVYyMbW8sho1X1NJbaoX5SaDQqxg3uzeZGdySCoVV00OaYkIHNOOIpYRbdU49vxu9f6Z712F2wwlcvnD45Hvs5SJRmrpPLTWmMvbE7Vw70Mxj8ZkFfIMuwvt3PNHbjTgjx9QJ3XnuI1fTw63W0KTh5ldttT/EEG9mDEDlDMWh6VocqyeYtYWUIruo+V1J+bSZZb2E0AAR4hI7Cx5NcAjR4cEXz0OIDk1w+MazFyVfk3XzK6lny/0v7sDTz25M3y/Ur84BVooLZVKYsm36tvcAkvGTc1G8RZgwKltctfEQjjVjPPbiZllE26ozkupRO3EtB9elcrLJshNAUPed+uCOrQO31C9T9gwCIwRK50Ge4RAQvTjbruxfi889+64uZYHuex588ALMvavG5mopnd8NP7QH93zlcviacM2P7knXIN/mVDELBdyyQxwDk63LeM/5+5ML6Hee2YXZixNNcelJEXeAhQmbRks9zcLOuaPYo6kakPZAYcBSPMRIIIaiTPquBtoJkv7GKlBiJZO7S00NZcJNaQoV6Ppaxc7mHdLIDrjglOaTDs2aRjTTuAQcSMTCbIwRQKzlwEBnAqcOtK4mFFOheQRQKPZgJJGulAhn94iJQgOhWFdj/Y5lHLt/U+cy61i/n7qGjJkGhZXZs3uLSwHUVr1EUZif5IUDpDJjsFQt+RmhZYDLVWkhZW5IU0OueW3p2s/ffS00w9eZvrEDqghXxMzbxCE0OigRaKN0dn7u+XVwypzEQHBzrfw9uCgLhyjieGgVT1F04GeIIc7WGIDKGYhnVxbw0mwupXOMTi208sfCUUTlZEJYbiu0apLUKw8mRt0WKHxA6SNm0XViyKxbaWAS58sIWWEVkprpKfwtl22ruCy8l3Jge6hZBcCVG55L24xci5FvETeQCvGQbMkBXSWTaCxywNG9pyvdvAcPS2krByeTpn2GlPmJBO/F+4PV9CwJBu282m6ikn2iAzUrSONqsblaSnqLzaOlXqXCUqhw159cA4pAs4bxox/5LgCxMz/w7R2gEScPlnw1ah4zSddA0LJsGxvGHd+5Ejf/wIOpx0k6fhPEKntivi8UAG+CWQMGGb4Twa2gPII28UPHNhBD9SKSvrHuy46t83InkOWG4Grf/S4IVyqHCqgvh1zwMCaEyuuELoLakE/4UZiVdsIopnL8xVQARRjJfcDZeRAD1AB+hRAqh7jQ4gNXPQpAugwXLuAbV5QI960ThkQ9WNxMKpPALFok1/mtsKafuvJ0OVc/o2Tl387pvT4jqb4qxVeFCyAqg+OWHWJFUi6sxn5EKg4n1RK9AhC445lLEIITT5TaTAXzGwDp75EZCI1HnHnxP3ECfBdfmsNSMe59l8tYtc5sUUAxRzmuG3c89bLakiGGOFtiACpnKEw0mz8kIku6J+hEF9mhjh7TUGLWFmjZpXJAYzRyH5PCRTSmJeFTpG+Ie0/A/LPOMaLlOKj/gMs9VYgY12/pOuuuzrdbHjtG6tnwy4PS/q37zX1cIqVeQ1CK2jQtsq18hlrCj/yANIVbChXu2nsRYg6qQpcGokhJt5EPAaDpAPVsOdWDOrmbniJMaGnv7z2+Bc/csQseMsGZ+DWP9+96An8eL8bsxUkyeEsVMTp5Ut1dmy/ccb2IdzV1JhNqv1EfVPRpx5MbxqWy5AYoagJryicvfeZCS3cLwAUW+3fTsOTb6i1RnCCUS5rCGYtpbywBv26GH754X+9873jsMrgHJ3AzQlGz+KP4zu/FbOXbMRAqgq87hoNaoGiR0kBW0ixlzCLuXp2SqIoWKzp8sVIWpVGWRM0E83PLWbmT0keMnvOulF0jaW6sAsvGn5gQqCsjT6JokvsrNz87VaysVMpsAjwfRBiuzQ1ZTdhc0XXYSt3ANX1KVlbuGKTMCZEI3YMyl2RtyqGLB2NCh5LhIc6BGIDKaY5D07VYakYYFW3SI0RN6Vi6xyYcAylLTZUsp/NwBARGKm8uVJ0/U3b/6NF5fP7YlQDQOXrqg5kjCXECB3JRSnatV4eVAr9MPPTieXhX1s34VEGqUQmBEJ3Tyhyn3Y2pv38DJJQBFE07QVkZKoCbrxGAYozDyLd472VP4K59F3Ypo1wTEi2dQR2D4FSvQEjl0N9++GK8/+q9WF+u4AtffTeq44T33PogSmszrzGLBb712WvAc8D7fuz+9PolC0ew9L4KR+7apmzFKoAI4Ov7L0b93FxKSeSiWpmcRR/0lT+/Rq5tTR0gUhDCEZmJGAPodydmrRgyBsZcY9M2ma4lkUpGXjHSJGv41lmKR63kQQIsiJGqn+JImLbVosq5+SmWN40AOBTTbpIXgMdpDMIYqNcSykVhU8KYMtdaAe9yzbpUDK14fPaBa3DrNQ/07reksymy49eqL/vzSSBPQYVd3h/80EMJdN/52WsFjFj6iwSMUJuxUo2wNdakEbkGSxcE9tnHHtqB0bVtEluvjpsv3ZP+/aV9l4MDIU4LYRBVX5JcApjgyigOskACJm6Vm3ThorS4mBUIwcvfkNdrbYuHIYY4R2IAKqcpDs/W4NDSAkofkmoesNV8RGSvYMUBDigooo0esyC9dCw9kVfWSFfS7jXrUgoIEOHGqe+GznaZ+LDf2bgDFoBODsqI9NgVCDi6dtOz3/dct44XEbcQ9r6wRRu/EdASGNRVMOT+EGnneixeSnpTaTIYkYE/u/9K3Pqu+7PNxW8mVf+Y/Tiv0g1EIF61iA9dtBcA8MX7roY/mhl2NQ5/8Z3L4ZcdqkUpQf7uH12N9//EPQCAr/+/NyT9BBVAGPerHRy04Voh3+UaYPb0GtHF6PlT7E6XIqScV1fveWUMqdDTmuulLBBDymRVuOmSIFffNlYmVRPp6y77nZAaKlIUrQUbi6PvwdgCyr43Aj/8o/fKULLDwZUF7P//XYRyEWjnCc2RCW7H5fjRi7sJd65qcGJjixmXqE4QnDImMo5a/QMRpLZzMuZcEEKVp2U6ximMgDjq0ocWe49vwd5HzoebEUqWsS+mlPXmEYCXN1M0hogBvPdDj2C+mPWYwa46SAZCzAiV2dHLbuAXpYIZLftNAupWAKkInxkP7dmJh4rzcdMVj2FjtYw88u8mAK4Mcj0quRdMcyIbMErVlRgwAZDeJ00nj8s2adVCkwmWsrFjBv78mYvxgZ2PD6zKEGd1DEDlNIXLQMTqiFlKBw6IwaEGMM1ASt16BSIM5wN8JmS17sZYzbrYZGUZHVstZ4xGbpOfTNuIEXSmklWbbPND5z8h77/CQ83e79nrx2x20NUsuZjlzZHAlPm5pBJp7UeCXGcC4Hg7wjfuf4d4lRgV0FKqKgGA4tIT+NAF+/rHXcTUlZZJSnHdzEk5qgPe8/88gIlvuu0VSDBpyuIU2sg2OviaxNPEKousER3QmZDp+Lu8SgVIQlAbc5ukV8lVdPWOnj+KgZ0eSRWhVTiUvjeqyDVStm/uvlsqbbrJzLQSFLPJlKIwgaVW7KhupG36gxKigx+3CBuA6YkK1QnqqoPUksXPtDzZDlzZpVgBsSW4hhNQYi+aljCSsnZa9vj8169PPYeS8FRZkFABVDCMXnTpfU5iXQLw7S+/Ez90ywPiEJ2PH0MM5PK0YZT9sLfjEHYuWpVV2XkHUd1ph9iT9vNh3PnQpTDzv79y7SMnMVHJCZYCUHYLCK+tNaoigIgxawrUrTy+nYs5rkz3UOUDZl6chmMgxEB436VPYKGc9r5zAClD/GXjnhfOx4npKFWAdnYVSAtoY/1puvyK+1sd5yRQYaVY66Vzp4a/aWrElSkcRUQX0TgGkxm+BTRRKngs8y7sSsCsJdSBUbecHCLh5WEVo6SMmAmeZJUV2KGdzhCXI2KtFpyZR4lM+qSlngFcxOSn4LxoXmIgcJTHl3MR0TFiwWgX61OfnMYLzRzuP7AD0IerczNJVzQtYvDoWdEDyDUozEhGbREQnxQDMa0CkEioF+WaL4USX7/vQoCm3Uq2JemdEyAlrgDiyjQd9+2PXg5/cAwqA0LRirGajUlDoBrghtAuztBmXV0bnootSQRiy8AS8LkvXIl33vAknvj8RQoKAPZTcAlwxcnHg81ePkutEMt3pk67tfY4Upt3tHIusQaoRurNw2OAW13BtwQ0AGrZR7SyZNu2BbiGVljJe9HGPet0rDebTFUpRcQJUEUGPviRe1Evdtd5M17A8fczDn5hN+IyZPyXgS/svVKEyy0hzDHC9hmIZpiNWvCiQ9EII8EEefJU8v+4ArSBERtCWytQIaAwINdKyqmNETFEYStabRypgIdWCFGdd0PBCJDKH26VEdHSbrTdeJrAul6s4bPr3dbTHvNAxoi1HaCLE0ZbsHgABQBTAAqsEBRcZ+k9q0biipMJ4OrvBQCerqBN4ETYEQ9GgYCJazCHBhW1OMoTLIdKtGvRIQTC9nUncLl6Kj2+uBEn6hHQRLxr835sKLXPzgxoh4rjId7gCEszRL2vOLH7LE1CwQgk+in2AbwiGzK/eoBM/Fq2PkvimWeewa5du870YQwxxBBDDDHEEK8jnn76aezcufNVbXtOApUYI/bs2YMrr7wSTz/9NBYWFs70Ib3t4vjx49i1a9cw/mcwhmtw5mO4Bmc+hmtw5uO1XANmxokTJ7Bjxw449zJug6vinEz9OOdw/vnnAwAWFhaGm/MMxjD+Zz6Ga3DmY7gGZz6Ga3Dm49Veg3Xr1r2m/b46ODPEEEMMMcQQQwxxBmIAKkMMMcQQQwwxxFkb5yxQGY1G+M3f/E2MRqMzfShvyxjG/8zHcA3OfAzX4MzHcA3OfLzZ1+CcFNMOMcQQQwwxxBBvjzhnGZUhhhhiiCGGGOKtHwNQGWKIIYYYYoghztoYgMoQQwwxxBBDDHHWxgBUhhhiiCGGGGKIszYGoDLEEEMMMcQQQ5y1cU4Clf/yX/4LLrzwQozHY9x444246667zvQhvWXia1/7Gn78x38cO3bsABHhj/7oj3rvMzP++T//5zjvvPMwmUxwyy23YO/evb1tXnzxRfz0T/80FhYWsH79evz9v//3sbi4iCFeOT75yU/iB37gB7B27Vps3boVf/2v/3Xs2bOnt810OsVtt92GTZs2Yc2aNfiJn/gJPPfcc71t9u/fj1tvvRVzc3PYunUr/uk//ado21WtmIc4Zfzu7/4urr322uSyedNNN+Hzn/98en8Y/9Mfv/M7vwMiwi/+4i+m14br8ObGb/3Wb4GIej9XXHFFev+0jj+fY/GpT32Kq6ri//7f/zs/9NBD/DM/8zO8fv16fu655870ob0l4nOf+xz/s3/2z/gP//APGQB/+tOf7r3/O7/zO7xu3Tr+oz/6I77vvvv4r/7Vv8oXXXQRr6yspG1+7Md+jK+77jr+5je/yX/+53/Ol156Kf/UT/3UaT6TczM+8pGP8O/93u/xgw8+yPfeey9/7GMf4927d/Pi4mLa5ud+7ud4165d/KUvfYm/853v8A/+4A/y+973vvR+27Z89dVX8y233ML33HMPf+5zn+PNmzfzr/7q35ZrbAAABxBJREFUr56JUzrn4k/+5E/4s5/9LD/66KO8Z88e/rVf+zUuy5IffPBBZh7G/3THXXfdxRdeeCFfe+21/Au/8Avp9eE6vLnxm7/5m3zVVVfxwYMH08/zzz+f3j+d43/OAZX3vve9fNttt6XfQwi8Y8cO/uQnP3kGj+qtGauBSoyRt2/fzv/u3/279NrRo0d5NBrx//pf/4uZmR9++GEGwN/+9rfTNp///OeZiPjAgQOn7djfKnH48GEGwHfccQczy3iXZcn/5//8n7TNI488wgD4zjvvZGYBm845PnToUNrmd3/3d3lhYYFns9npPYG3SGzYsIH/23/7b8P4n+Y4ceIEX3bZZXz77bfzD//wDyegMlyHNz9+8zd/k6+77rpTvne6x/+cSv3UdY27774bt9xyS3rNOYdbbrkFd9555xk8srdHPPHEEzh06FBv/NetW4cbb7wxjf+dd96J9evX4z3veU/a5pZbboFzDt/61rdO+zGf63Hs2DEAwMaNGwEAd999N5qm6V2DK664Art37+5dg2uuuQbbtm1L23zkIx/B8ePH8dBDD53Goz/3I4SAT33qU1haWsJNN900jP9pjttuuw233nprb7yB4e/gdMXevXuxY8cOXHzxxfjpn/5p7N+/H8DpH/9zqnvykSNHEELonTgAbNu2Dd/73vfO0FG9feLQoUMAcMrxt/cOHTqErVu39t4vigIbN25M2wzx6iLGiF/8xV/E+9//flx99dUAZHyrqsL69et7266+Bqe6RvbeEK8cDzzwAG666SZMp1OsWbMGn/70p3HllVfi3nvvHcb/NMWnPvUpfPe738W3v/3tk94b/g7e/Ljxxhvx+7//+7j88stx8OBB/PZv/zY+8IEP4MEHHzzt439OAZUhhng7xW233YYHH3wQX//618/0obzt4vLLL8e9996LY8eO4f/+3/+Lj3/847jjjjvO9GG9beLpp5/GL/zCL+D222/HeDw+04fztoyPfvSj6d/XXnstbrzxRlxwwQX43//7f2MymZzWYzmnUj+bN2+G9/4kZfFzzz2H7du3n6GjevuEjfH3G//t27fj8OHDvffbtsWLL744XKPXED//8z+Pz3zmM/jKV76CnTt3pte3b9+Ouq5x9OjR3varr8GprpG9N8QrR1VVuPTSS3HDDTfgk5/8JK677jr8x//4H4fxP01x99134/Dhw3j3u9+NoihQFAXuuOMO/Kf/9J9QFAW2bds2XIfTHOvXr8c73vEO7Nu377T/HZxTQKWqKtxwww340pe+lF6LMeJLX/oSbrrppjN4ZG+PuOiii7B9+/be+B8/fhzf+ta30vjfdNNNOHr0KO6+++60zZe//GXEGHHjjTee9mM+14KZ8fM///P49Kc/jS9/+cu46KKLeu/fcMMNKMuydw327NmD/fv3967BAw880AOMt99+OxYWFnDllVeenhN5i0WMEbPZbBj/0xQ333wzHnjgAdx7773p5z3veQ9++qd/Ov17uA6nNxYXF/HYY4/hvPPOO/1/B69ZCnyG41Of+hSPRiP+/d//fX744Yf5Z3/2Z3n9+vU9ZfEQrz9OnDjB99xzD99zzz0MgP/9v//3fM899/BTTz3FzFKevH79ev7jP/5jvv/++/mv/bW/dsry5Ouvv56/9a1v8de//nW+7LLLhvLkVxmf+MQneN26dfzVr361Vxa4vLyctvm5n/s53r17N3/5y1/m73znO3zTTTfxTTfdlN63ssAPf/jDfO+99/IXvvAF3rJly1CW+SrjV37lV/iOO+7gJ554gu+//37+lV/5FSYi/uIXv8jMw/ifqcirfpiH6/Bmxy/90i/xV7/6VX7iiSf4G9/4Bt9yyy28efNmPnz4MDOf3vE/54AKM/N//s//mXfv3s1VVfF73/te/uY3v3mmD+ktE1/5ylcYwEk/H//4x5lZSpR/4zd+g7dt28aj0Yhvvvlm3rNnT28fL7zwAv/UT/0Ur1mzhhcWFvjv/t2/yydOnDgDZ3PuxanGHgD/3u/9XtpmZWWF/+E//Ie8YcMGnpub47/xN/4GHzx4sLefJ598kj/60Y/yZDLhzZs38y/90i9x0zSn+WzOzfh7f+/v8QUXXMBVVfGWLVv45ptvTiCFeRj/MxWrgcpwHd7c+Mmf/Ek+77zzuKoqPv/88/knf/Ined++fen90zn+xMz8urmgIYYYYoghhhhiiDcxzimNyhBDDDHEEEMM8faKAagMMcQQQwwxxBBnbQxAZYghhhhiiCGGOGtjACpDDDHEEEMMMcRZGwNQGWKIIYYYYoghztoYgMoQQwwxxBBDDHHWxgBUhhhiiCGGGGKIszYGoDLEEEMMMcQQQ5y1MQCVIYYYYoghhhjirI0BqAwxxBBDDDHEEGdtDEBliCGGGGKIIYY4a+P/Dx/LFeoZGNhzAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAFbCAYAAAD7pqVKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9adCt21XWjf/GnPNu1lpPs7vTpDk5ASKEBIJVIQH+dvShiqYAASlFAyoiIakCPlDCW0WAKmkVFLRAKAlC+QEFtLAUsEIFC0l8C0UpLMWGkBjSnLPbp1nNfd9zzvH/MOa817NzAiTq6+HImlW79n7WftZadzfnvMY1rnENUVXlMA7jMA7jMA7jMA7jD+Bwz/YBHMZhHMZhHMZhHMZh/G7jAFQO4zAO4zAO4zAO4w/sOACVwziMwziMwziMw/gDOw5A5TAO4zAO4zAO4zD+wI4DUDmMwziMwziMwziMP7DjAFQO4zAO4zAO4zAO4w/sOACVwziMwziMwziMw/gDOw5A5TAO4zAO4zAO4zD+wI4DUDmMwziMwziMwziMP7DjAFQO4zAO4//YEBG+5Vu+5dk+jMM4jMN4Do0DUDmMw3iOjd/4jd/gi77oi3jyySfp+54XvOAFfMZnfAY/8AM/8Gwf2v+x8S3f8i2IyO/755M/+ZOf7UN9xvj2b/92/uk//afP9mEcxmE8Z0Z4tg/gMA7jMD748da3vpVP+ZRP4UUvehFf+ZVfyeOPP8673vUu/s2/+Tf87b/9t3nDG97wbB/i/5HxhV/4hbzkJS+Zf768vOSrv/qr+YIv+AK+8Au/cH79scceezYO7/cc3/7t384XfdEX8fmf//nP9qEcxmE8J8YBqBzGYTyHxl//63+d09NTfvVXf5Vr16499H9PP/30s3NQz8J4xStewSte8Yr55zt37vDVX/3VvOIVr+DLvuzL/pc/f71es1qt/pc/5zAO4zD+18ch9XMYh/EcGr/1W7/Fy1/+8meAFIBHH330oZ/f9KY38amf+qk8+uijdF3Hy172Mn7wB3/wGe978YtfzOd8zufwS7/0S3z8x388i8WCj/3Yj+WXfumXAPiZn/kZPvZjP5a+73nlK1/Jv//3//6h93/5l385R0dHvP3tb+c1r3kNq9WK5z//+Xzbt30bH0xz9ne/+938xb/4F3nsscfouo6Xv/zl/OiP/ugHf1F+l/HOd76T173udXzUR30Ui8WCmzdv8sVf/MW84x3veOj3fuzHfgwR4V/9q3/F6173Oh599FFe+MIXzv//d//u3+XDP/zDWSwWvPrVr+aXf/mX+eRP/uRnpJWGYeCNb3wjL3nJS+i6jieeeIJv+IZvYBiG+XdEhPV6zT/4B/9gTk99+Zd/+f/yuR7GYfzfPA6MymEcxnNoPPnkk7ztbW/jP/7H/8jHfMzH/J6/+4M/+IO8/OUv5/M+7/MIIfDP/tk/43Wvex05Z77ma77mod/97//9v/Nn/+yf5au+6qv4si/7Mv7G3/gbfO7nfi4/9EM/xDd90zfxute9DoDv+I7v4Eu+5Ev4L//lv+DcPs5JKfFZn/VZfOInfiLf/d3fzc///M/zxje+kRgj3/Zt3/a7HuNTTz3FJ37iJyIivP71r+eRRx7h537u5/hLf+kvcX5+ztd+7df+T1+rX/3VX+Wtb30rX/qlX8oLX/hC3vGOd/CDP/iDfPInfzL/6T/9J5bL5UO//7rXvY5HHnmEb/7mb2a9Xs/X8PWvfz1/4k/8Cb7u676Od7zjHXz+538+169ffwjM5Jz5vM/7PP71v/7X/JW/8lf46I/+aH7jN36D7/u+7+O//tf/OmtSfuInfoK//Jf/Mq9+9av5K3/lrwDwER/xEf/T53gYh/GHYuhhHMZhPGfGv/yX/1K99+q910/6pE/Sb/iGb9Bf+IVf0HEcn/G7m83mGa+95jWv0Q//8A9/6LUnn3xSAX3rW986v/YLv/ALCuhisdB3vvOd8+t/7+/9PQX0LW95y/zaa1/7WgX0DW94w/xazlk/+7M/W9u21du3b8+vA/rGN75x/vkv/aW/pM973vP0zp07Dx3Tl37pl+rp6ekHPIcPNG7fvv2Mz/5A733b296mgP74j//4/Nqb3vQmBfSP//E/rjHG+fVhGPTmzZv6qle9Sqdpml//sR/7MQX0T/2pPzW/9hM/8RPqnNNf/uVffuj7fuiHfkgB/ZVf+ZX5tdVqpa997Ws/qPM6jMM4DNVD6ucwDuM5ND7jMz6Dt73tbXze530ev/7rv853f/d385rXvIYXvOAF/OzP/uxDv7tYLOZ/n52dcefOHf7Un/pTvP3tb+fs7Oyh333Zy17GJ33SJ80/f8InfAIAn/qpn8qLXvSiZ7z+9re//RnH9vrXv37+d2VIxnHkzW9+8wc8F1Xlp3/6p/ncz/1cVJU7d+7Mf17zmtdwdnbGr/3ar32wl+YZ4+r5T9PE3bt3eclLXsK1a9c+4Od+5Vd+Jd77+ed/+2//LXfv3uUrv/IrCWFPPv+5P/fnuH79+kPv/cf/+B/z0R/90bz0pS996Dw+9VM/FYC3vOUt/9PncRiH8Yd9HFI/h3EYz7Hxqle9ip/5mZ9hHEd+/dd/nX/yT/4J3/d938cXfdEX8R/+w3/gZS97GQC/8iu/whvf+Ebe9ra3sdlsHvqMs7MzTk9P55+vghFg/r8nnnjiA75+//79h153zvHhH/7hD732kR/5kQDP0ITUcfv2bR48eMAP//AP88M//MMf8Hf+VwTC2+2W7/iO7+BNb3oT7373ux/Sy7w/UAP4sA/7sId+fuc73wnwUHURQAiBF7/4xQ+99t/+23/jP//n/8wjjzzyAY/lD5PQ+TAO43/3OACVwziM5+ho25ZXvepVvOpVr+IjP/Ij+Yqv+Ar+8T/+x7zxjW/kt37rt/i0T/s0XvrSl/K93/u9PPHEE7Rty7/4F/+C7/u+7yPn/NBnXWUSPpjX9YMQyf5+ox7Dl33Zl/Ha1772A/7O1cqeD3W84Q1v4E1vehNf+7Vfyyd90idxenqKiPClX/qlzzh/eJiB+VBHzpmP/diP5Xu/93s/4P+/P+A7jMM4jA9+HIDKYRzG/wXj4z/+4wF473vfC8A/+2f/jGEY+Nmf/dmH2JL/r1IQOWfe/va3zywKwH/9r/8V4BnsQx2PPPIIx8fHpJT49E//9P/tx/RTP/VTvPa1r+Vv/s2/Ob+22+148ODBB/X+J598EjCh8ad8yqfMr8cYecc73vEQiPqIj/gIfv3Xf51P+7RPQ0R+z8/9/f7/MA7jMB4eB43KYRzGc2i85S1v+YBsxr/4F/8CgI/6qI8C9kzI+6c73vSmN/1/dmx/5+/8nfnfqsrf+Tt/h6Zp+LRP+7QP+Pvee/70n/7T/PRP/zT/8T/+x2f8/+3bt/+Xjsd7/4xr9QM/8AOklD6o93/8x388N2/e5Ed+5EeIMc6v/8N/+A+fkfr6ki/5Et797nfzIz/yI8/4nO12O1cRAaxWqw8aLB3GYRzGgVE5jMN4To03vOENbDYbvuALvoCXvvSljOPIW9/6Vn7yJ3+SF7/4xXzFV3wFAJ/5mZ9J27Z87ud+Ll/1VV/F5eUlP/IjP8Kjjz46sy7/O0ff9/z8z/88r33ta/mET/gEfu7nfo5//s//Od/0Td/0u+o2AL7zO7+Tt7zlLXzCJ3wCX/mVX8nLXvYy7t27x6/92q/x5je/mXv37v1PH9PnfM7n8BM/8ROcnp7yspe9jLe97W28+c1v5ubNmx/U+9u25Vu+5Vt4wxvewKd+6qfyJV/yJbzjHe/gx37sx/iIj/iIh5iRP//n/zz/6B/9I/7qX/2rvOUtb+GP/bE/RkqJ3/zN3+Qf/aN/xC/8wi/MrNcrX/lK3vzmN/O93/u9PP/5z+fDPuzDZpHyYRzGYXyA8ewVHB3GYRzGhzp+7ud+Tv/iX/yL+tKXvlSPjo60bVt9yUteom94wxv0qaeeeuh3f/Znf1Zf8YpXaN/3+uIXv1i/67u+S3/0R39UAf3t3/7t+feefPJJ/ezP/uxnfBegX/M1X/PQa7/927+tgH7P93zP/NprX/taXa1W+lu/9Vv6mZ/5mbpcLvWxxx7TN77xjZpSesZnXi0hVlV96qmn9Gu+5mv0iSee0KZp9PHHH9dP+7RP0x/+4R/+oK/LBypPvn//vn7FV3yF3rp1S4+OjvQ1r3mN/uZv/qY++eSTD5UH1/LkX/3VX/2An/393//9+uSTT2rXdfrqV79af+VXfkVf+cpX6md91mc99HvjOOp3fdd36ctf/nLtuk6vX7+ur3zlK/Vbv/Vb9ezsbP693/zN39Q/+Sf/pC4WCwUOpcqHcRi/zxDV/w2quMM4jMP4Qzu+/Mu/nJ/6qZ/i8vLy2T6U/yMj58wjjzzCF37hF37AVM9hHMZh/O8dB43KYRzGYRzG7zJ2u90zdC4//uM/zr179/5AdmY+jMP4v3EcNCqHcRiHcRi/y/g3/+bf8HVf93V88Rd/MTdv3uTXfu3X+Pt//+/zMR/zMXzxF3/xs314h3EYfyjGAagcxmEcxmH8LuPFL34xTzzxBN///d/PvXv3uHHjBn/hL/wFvvM7v5O2bZ/twzuMw/hDMZ5Vjcrf/bt/l+/5nu/hfe97Hx/3cR/HD/zAD/DqV7/62TqcwziMwziMwziMw/gDNp41jcpP/uRP8vVf//W88Y1v5Nd+7df4uI/7OF7zmtccrKYP4zAO4zAO4zAOYx7PGqPyCZ/wCbzqVa+aTaJyzjzxxBO84Q1v4K/9tb/2e74358x73vMejo+PDy6Ph3EYh3EYh3EYz5GhqlxcXPD85z8f5z44ruRZ0aiM48i/+3f/jm/8xm+cX3PO8emf/um87W1ve8bvD8PAMAzzz+9+97vnxmuHcRiHcRiHcRiH8dwa73rXu3jhC1/4Qf3uswJU7ty5Q0qJxx577KHXH3vsMX7zN3/zGb//Hd/xHXzrt37rM15/wV//f3A3A75JhDbShExWYXPZ4d/b4QaBoKQW/A7cIGjpseYm8AX7aIDpSJEoSIK0VCSDREGdMt3INDe3TLsG/1RLd09Y3FZyC7vrwnArkwO4aO8RBUngN0J7CWTAgR8UP4CbFD8ouRG2jzjGIzuOsC3H40Fd+eMh17skoI2iAqKgYscuGSjfKVFAQVu11yZjnPxQzlf3700L+zu3MJ1k3CS4yPy+9ty+O5Rj3j4i7J4XkUmQJEgGf+kYH5+QPqE7jz8PhLXgB2jPFHXCdPTwuUzXEu7GiG8iaQqoQmgSPmSO+4HGJ9797huQBbJ9l4oiWZBJcNG+WxKQIB4rCPid4HZ2DwHSwshCKZyhTFeuDdDdEdoLJS6F4cSOrz23Y3UThJ3iRxhPBLJdJ3WQWhgeySze6whbcFHp72WO3rlGg+PBH1lx8SK77v3d/b0Mg7K7LqSlff90pHA60byrxUWhuwd+VLa3hO2LJm4+/5xVO5Cy43Lo2I2BaWfPe9vZSfZNZDs2bNctOnikySyOBxbtxBg9F08d4S89GhQ/CLxoTddHNpcd+aLBby2ikSykVumef8njpxe86/Z1/NsXTNcyYe1IvaLXR3QbCGcevxX8CGFTrq9C9hBXkBuIR2VOJHvG+tuO7r7avRH7My2F4Va5R6M9b8unrVngtBKGU7Fn3tln5gBhB4vbStjYfdveEuJSbX5thbC25zouFW3K/VpmtMnI5NAmg0J7N5B6JV2LtMuRcdvg7zX4jeB3QnNph5kdpB6mUyX1SrgUmkvBb+2YUmd/q9c5kZ46SMsEjc1BouC3Dr+xZze3avc+KOoU+oR4RS8DfuNtbdoKfmffnTud53HuyvWKzHNQUjnPI0Wx97rJjiW3kFtbz0gyzwfJ+3XJFp36+4qG8rPUeavzv+vviZb5vEz4hbUXyNGhO48MDkRtnnkFp5AEmRwyCX4QZNp/r4byPY2Sg6KNQpNxbSJ0kbZNxOiYhoY0eBgcMjm7fiHbd3hFnCKiiFe8zzRtQlWIUdDk5gPP2ZEnj472GS7Y9UcFVTsPBo+MAipUzl69ol6RJLjR1iLJ+2spuawvXtEWcqPkRtE2Q5sRuboY1b+U0EWW/cSqHdnFhu3YMA0ecYrzGe+V4DLOZRqXWbYjN/oNj7RrWjcx5oYhe3a5YRMbNlPLemrZTo2tGWOwSQiogveZbjFx3A2cdDtSdozZMyXPmIJ9/+iIU0AHD5PgRmd7Szn+er+0T7iu7L9NJrhMExJT9GyHwLRr0G3ZwLwiTYa44V2v/x6Oj4/5YMdzournG7/xG/n6r//6+efz83OeeOIJfFgALTkrkyZCN9A3ETrHLrbkUchdRo4i2SnpQUN7z9GeCe25ErY2gWMvbFbCdF1tb1xkNNQFQXACOThEGtzSEzvYXBckQl4qrlN8EsJkG7Rk28wC4MsVlqw0Ck4UaaAZM0zgzx1jFnKwZyCH8rBjC38OZYOUAmCCzouFujLJvb3mBsFNQva2SEPZzDNII0jD/r0NODFwlQWmGxG2Dn8h+K1NTt+C8+AzrO4m0iOeSEY7cKOQHx2gyZwuIzF6trcXNHgaBJ9BVhCPIZ7aQhcuhXYDzQXslj26GtCpAaf41cCyH4m64rHTM9530cJlA1HAK9rZBua2HnKZd9EW5EbsWnGk0AsZwBkgUWcLiyQDKm4qC2wDTGKf04OcKHiYTuyz3AThvcLpfxkYpkDqhNEJ07GQV8AjI7sXZHTnaZ8KrNZKd/8e+fZdHp2exPXX2DwuxMfsWuegcCH0WxgcTMeKD0q4kRmlwW0csnJ094FT8KHhwa5hKxMhJNZTj04OnKBNhG6iCYnHT7ccNZdcTh3nQ8+DzQLo2OWeITe4VUAXAiGjlwG9bNlMtrh3U0N7KXT37fnZ3RQ2j3luTz3SNzSyABTvhMU92MnCNs2VIN7ABYH5foiU570H1ym0tkmJQBJH7AwA1A3SteAbeyBdFuQIclT8DvqokB2ps2c8Lm1PbQZY7hJxKaRbDr2hOF9AuhPywsBRPwFjARlR93OiPA/LC4e/owxrYbiRCQ7a6KAB7ZXxxh5gxmsJQsafBRqcPW+noL09Y+L2m7+bBK9KpHynV+hAnMOp4EfBY+A2Y/M5kcFnmtjQbm3+O0AacA6y2lyVBDoUIJ3KXNbyrAe7/rlTdAHR2WdXACVRCkgogH4CV8F+BR0BAxDD/ufU67z+1AinBmKSII1KKmBBRHCN4AogssMrIKdTOM5IyKQkdoBJ5qCHDC4JIdl9i01G24j0E6Gf6H0iZyVpIkao7ZqcA1UhJ09WQQtYcG2iXwwEn0lZyFlIKqTkmCZPHALqvB13m3EhG36uQCaKzTfdSwskg6gdK8sCarwBTkI2oFTW4jx6mJxdq3rtgiIh44LuAYsKLiS0C8SmIXRwtBRShpQ9iidnx5QcKTpydDyYlPs68LQO9CHSuETw9rnaCF0vhCwssjKlTMyRlB0pCyk7wOFdQ/aeC9fjgiJAK0pQwUfHbgqMY2DcNMhFoNk5/Cj7fcdBdkrMikpC2wm/GDlZ7LixGOn9xOXUGWgaW4boScmRkiNe2ub0ocg2nhWgcuvWLbz3PPXUUw+9/tRTT/H4448/4/e7rqPrume8LpPgNs4WybPA7m7LriA9kv0tWeCsgUnozh1hY+xK2NoEGq4J44kwHVnElMuGKKOzCG0nuBGGsUMqewGGiB2kTsmd0pzb77mxzGdnv+snJbX7G5yDINnYFL/LtOeJsBNi7xiPhOmaMStuKiFN+a4c7PtqZGXApSIaKSAHULXvaRUXxXCJh1RmjEQ7rsoOoLYpd097Y5vUImVfFsTsYTwBFx3NhbJKjvHEDmsEmjZyebbA3W5Z3SnXd7DNJrcwXivMy84i5rBV8kaQ7NkceYiCjJ5BhWkMaHQMU0CTM+AVpYAKh3oln0SaxUQcPXkb0I3DD3bMcQGptYVZnUV0soh2iTYBNmXhKfcm9QYop9OMeru22ii5zyCK3zXsbjZIVmIvxIVdP/UgTeZ5jz6g9Yn3Xjvh6faI7Y0XcvLOx+nv7Dj97QGk4+JJYbye0FaJR472gbOFDts8xns9YOB47JRm7fE7aO47ptywS0J/NNIvRwZpyOuGPHgGwK2UrELrEsFljtqBpMLdB0fEu709K6tEf3OLiLKlJ9xrcGeO6UY2Ni1gDM4TkfDAs/itDrRDH0sg4Arr2D0wdiwuLapyBfTV+ZB6uy5uKmuw0/JM2oKcGyUuDBhW1i43trFLtGc+B5iOhByU/h6EjX1nxo5DnbEVFy/0pB6Ga0o8Tbitoz1zqLd7KZOwfEoIG2VESD0wGPiWKIS1/V+zNoazuXTEhR136mA6gnQakS6hybE83RJ85mJ9as+WL6xJqyV4KExEY8yH2+0jbg1KbnVeL+r5+50FDhnQwZHZM1OIfT4F/ISdrSsuKqkX+z/2YEG9MT+IMSppkdFFRtpUaCEhTw4ZHerFQM1kwIDCCOSG/XFeGVXAKKls0tQ1o4CejZA3dkyp1wLYbM5rBETm9UhDxoeMFHCakiNPDh3t2CTJvB5Ja0Aht56YEq5s7IIBE82COCUE+7+YHDF6EraZx9FzkRY4n7HGDWJAJtl7Nbr9uWZhpqlF8SHhPNDaa3U/jaMn7wIgqDNw5rpE20UW3ciinehDJKtwb73k8rIn77wxWSqgBmSaNuJcNkCUBecMHA1TwLtswKv8idGTom3wFYQhwm7XkLNjGyJdE+lDpHUJqddJlNbZtWlUHvpMBftbDbioGBN1ZcdBRHElyEDFAvax7EWeOUCRDJqEXI4xZvsTQuak3dH7iaN2YEqe9dQyxMDmSoPPD3Y8K0ClbVte+cpX8ou/+It8/ud/PmAC2V/8xV/k9a9//Yf0WTIJYRCatUX5KIzXbBNvLu3iqqM84fbv6QjiwoGzSC0uC+Uo4LYOvzN60qKPsjFFgZsj0QfChcMNNrkli1GbD4NkUPvs3NoxhY2lLzQAGLBwk+C3ibBV/NahEhiulfTUVCO0EvV0kGrklup3l/mVLMLKZdF0g23GD9G3AdtgRltEKChfnQEBvy3UcrMHKJQ0hwbY3Sh0eC6bzmlGvLJbt4T3dizfI7RnttDVz0Bres3e256rUdKi+AlS15E6xUVIYyAPtnhsk1i0lYR4ag+123rcTkhd5pHrF9y7WDEA2Xlw9n8VrGmT5xmnyT2TgZJyHoWiTccJ6RN5crjzgNs59MbIeN2zueVY3LPdOLe2oS7fq/hdz/vcKdeurXn82gXDKzbcfuEJ28cWXP8vnu5+tI1wZ/fCrSbkGHaLQHPfpp0GxW+MUnWTXa/VuzOLO5Hp2HPvpZ6dwOCU5fHA6njHZS4LbbYU539bP8pveSU0iUU3ctIPdP1EGhe4SUA8u7ggXHqWDyy1Z5ubI7dKXNkz9sgT97kdTunvtTTninpv928U4koZrlsaxu/sucWVzausOTXdBgYqvBfikT4073KjhQ0w6l8r2yj71M4810RpNjZfJleYSi1pt+sQV5m0zNBk23xKus7vbP7EHnIjjMeWZnGjlLSOpY6687KgZ5v3uRF71iuQOvcgHjcIw/3A5jjhI8SFWjrG2xyyoMTArSyjpQ0IhAvBTwJOSF0BNH6fWsmhzJNQrsngSjp2/7t2LYWwtTTkzCTCQ2yKgSs1QF9SpAzOpn+XkJDBaVl/hHy0Xw8p6VSksLVlLZtTNamsOQik/XdqUHKuqSfBjbbYvH96qDI2fhDytiG3Ae0U7RISFN9mNGSyNjCW9aiwyyQDWJOzB8W5knZQ22hdAcmugAlVZhCiavhDfJ4XZfEGlEKTiJMnTh5NdhM1Y7RVdswffAWkiChNF9E22WdnN8/DcRcYh8C6SXTdROMTKTtjWMr9RY1NabvI6WpLHyJD8gxTIGY3g4ZxCgZMCntCln3KrkuENlma3OcZvNX3ZpdnQAZ7MFIBSnAZ7+x9qQCKdAWwpPJZ48x+GGsk7PeKug7mTg2o1/QeEKPjcteRsuN86Gm8BVCNSzQ+sWKkC5FmfI4AFYCv//qv57WvfS0f//Efz6tf/Wr+1t/6W6zX67n76wc1StTmB1scXYJphUWCo9DfVtq1MpwI00pIixL5OYsIKdoOV+jQ1Nl7w9aiPDcZAzCeCLlRmsXEBKSxwXcGQPwOVPbRQG72jMp0rOQAfiyRY1lcUgdjK0hy+CHjtgm3S0hSXAxMK4vwbIJbesoPWDTVlo1GgADimRet+r1QFmyxc6UsqrYg634hybInbcpn+JE9kKk/b+37JSnrxyAeZziaCE1ivOxxgxgoC2JMFbb5SLm2KnYtDSDUqAsWTwlj0SG4CdLkSEujL0m2qaZgUUv2in8QcGeB96SbRtn6TDiaiJU2qvT7tkxwp+SxIhYpIErnHzXYIiuTIxyPnN645O72Ov7SEbee3BrtjdpzEDZ2jxf3lJN3Rt571HMvOqbrG3yJxsZrmYsnHNOywY9qDNPGEUNT8vV2/bTJkAV/4WkuhO6BfU97meie3rL4nci4ugF4dsDQZB69cU7jE+ttxzQEy7PvbJGLXWJoGzZ9S9tG/PM3tmiddSx+J7B8n9JeZIZTYxBxBtCSAzLcft8p/r5Rsrtbdu1dLGmw0QBCjbwri0Au7N8IzZo5XaDOgHluLTVqN7g8gx6mXmcALtmAcurtvrjRIv7UCn5Q3AhBlBxkD4Cxjc+NBlLn5zlZejEuldzZ+j5v3iVlAVga76iwIp0QFzBe1/k5dROEtZt1bLkRxq2dT1oquS2sa7RIEwobty3oougVqgZOii6lgjGhpHXLIq9OC9uhpufyzKwV2fQ66guDFY1pqkzKeGxAMq5MCyGpRL+DkHE2/5tsEbMKEvfAfQ6fq3wjiTGck8xaOyhai6DlfpX3NcxrkSvpZRf3QeFD0XmZy24ENkLujF3Li0xScI0BzrRkTlEh9m/deKadZ6Kz82gsxQKQELZbM93L0RlLMu3PUcM+BW4AS1gsRl5wesbl2HFvvWS3a0AFzQZ0DHzumZQ9QwEhJNoQ8U4ZpsAwBpuHg4fRMbqGaRlo+wkRcC7jOmM9UcG5TN+aFuW4GTgbe1J2TMlbaio58pUUD7Gwr5XtKQu1c3sGJGaHTgXkJHv+UnZkLczTldRV8JngE00BYjPQEWWaAlPyTFMgJZmBGIB2mfHU4ZY1EC06omDPr6WzDCRNk53L1jU0PtE1kdYnFmHCu8zCTRwtt3yo41kDKn/mz/wZbt++zTd/8zfzvve9jz/6R/8oP//zP/8Mge3vNSQKXgtAaIFYxG3BNCNxJYXOLQ9+ssliaQi76NORMC1tIc3B0j9xVfK4JRpwE7goTNsG12TSIhOjRWdhXZiGKmgrYEdK5OpzYTjmjV9JnQEnAD96wjriYqY5HwnbxHQUmI7toXNRSY2QgwGp8VhwsSxiIqSy6lSgMefLJ/CJOUKp6RBU5gVnFuHqPjKuC8p0XBdsi+aMCTHAFdYOd78jtR39xtIu2UO8ZjO9RmFVNOySWCrL2aLvooGvZqPk1s7LKfOir8HhdmUD2Hg0ZJbXt2x0iT/3hLuB3Cl5mUhlEaiCP5mMdnejXfPUWyphFiK7EnFS0mOjfde0btj1k0WVAv7Sk3st0bnQbJX2Qi09t7R7fvQ/4EJaLiZnIGRyiFeGG5buC0ULsHqXgAS7f9eU8XrCLSJ58Ej284YWl3D3ZYHL551w6ze2rJ6K5CaQOse4tIXkpLdfPoseBmCR7LuToJvAsAnEk5HlcmDZTtwTZdgty3W2DVO9pQb6a7tZXLc573ERxhN7npoLE6aqM1aliqHjHPEXgSaOUObIHgAzpyUo81O9RWQuFg2YN9ZSVef0UX0m1WFCWixFE3b27A6nMn+36bGurAXZQHXqIHcw9cnSU4PQ3fXzd6irwYqJvKtYNbe2EfuhCKQHZj2TljmdOkWPIr43+iitA4xFaxErJ87+fGrgcJUFqenWWEBaB7rM1k9IbfOmycYmiIlPU6/lehVGq6xLku3fLtr8yjX8L1oZmQQdhNwruUvI4AiXltJ2o62ZpkGp518DtL0gnUL9zwDf789FXGGjnMy6o1nLsn8ckAC5sMNuNLEyGfLkSVHIi2QM3SoaG1KFm0lKilEKi+zJi2xAscx3qkg477Uu++Mu/zezq8YspOzoQmTZjQBMkzEIqBBComkMkDTexKGppkjKpp/ynrVQFWTwhHNDezGKpcS7SNdF2hBnwJBU6JoiPEaYCqMyDAHNxoBVykxcEQrDrHGpgt+ULGVURwTGeIVVUtPkXAUpYEAreE8bEsEnvJhIF2CrwliBVyzItQK2ZcQdK84ZSPQ8c8zptbRPU40+MzSBromMjee4GzhqBk66D7156bMqpn3961//Iad6ro5wKTTJoru4KIuK0zkFNK1sQarpkXarSIRmq3T3ExqE7Q1f9Ad7yjX1Si6ahbgsVGQCHRyui6TOBGESHc0ldGcZFWF3SxivFRZlKFUIO/bRz6ltcBXQ5EZwk6O773CbCZeMVmwulLCOttmPibhqSL1pSJq1K+kaRb0xOXUxfHhx2aetZrpfZI6eyMzKfSislFETdA+UtHBFQ2Bgzg9aGBMDZ92ZAaj6fvWgteLGQQr1/CqTs7+OYWORuIqBohqF22YjuHsON0m5F4KeN1QMnpYZN9gCLoNDS4rIonWdK3tcWXBR0FUBKrXKoYK6ooMJW0Fd4DKtkGTXVhT6x9ZchAU5NJy8Uwk7JfZWrbK77mkulf6uI/V+nwopAt3xRmZKQnMuLJ62zXZagnqjFfKlpylpFDcxV8wMjyR2jwp+XLC4l/ZVMgpT9GgjtCHRtpHtukFcJrSRnB1pskgyXTZc7ALrNlnlwKM7xuuOa9fXiCgX6564a9g96HEXnrFR+sc3NB+9IUbP7n0r+tsev7PnIU8F8JU13549RZVScSO4YQ8y3GQbqN8JaWvpPHUWBMi2aDhKuit1zOLQuWLN7fVDIMja2Ii4NLDgRiFsCjgqm6Pf2fObg4FW7TLZWRo3bO3/wb4vLiFd08JclPdvhbARmnMD5hVsWeAhJcgR8s6TBFyb7BkaDXDBvMfsmYgr60mdl1oJDSnrTaOmhQkKyYTilOoYN5aKkyqMjSWttZA5wKhzyG/FgE/QOWhxkXkTz5TrW8Cgm9n3/bnNyKLMZ4n2uhvsGlQ9Xk2d1o1MfUlpXwFk8tBnKYiQ9QqIzWIM8ihkZ8GIzhenHFk5Lrl6zDtBo5+/Z/6uslHiyjG2+/TvPLIw7Bpu+xWL1iL8o35g4xrTfCSP95m+iSyaiUWwNM6UPGP2jMmbyDQGYvTkmlauIGwSVBwxBKJY5ZFrQJwJesmOlB2bqSFlxxADU/Skcj4zIHEl5TIzXqWiydnJmvNZASPZ7kEIpSrI29+usEGW1jHQIkWLktVYF1yG7EpKyD4jp4y4/SUTUdpuom8njrsR7zK7GObrMI6BOPkiHi6TqYiOJ69MbWbsI0Mbi5AXUhr4UMdzourndxvNJbgGxhUMtxKUSoTunswLfG7KA1+qCcJOCbtsKYgJ+rPEtArkVko0reSlRTRp9LhoYrzUFZpWBdck8gLSKORWyN5+ZzyG6VoutKMQKOi7gbiylEt/p2xMTdXGCM265Xgz4cZICg71DjcZQJGUae5v8V1AvaO5dKTGkVuHitHWOdj3zzlhjM1wIwa0WgjrIm5sDNiYqFaJqypwtDTFdGRi3/6Osrtl7x2uWWlr1caEjbEM8/eV91fNTOpkLtuUVCJTh9GwapvegG0CkplFWvMiVsuPY1mAk8CDDm2sOikvE+7S7xmYRm0yR7dni2IpnS2skoGywi4VUAN7NilshJS8aSmWltN/wfUzmpv3+M/++bRnjbEBrd3P4bqzjVzLIl826ErzpwBOjZ1bvxBjfZyVOzcXdg/CrgpITWMQryVkEcnbwPoFgRz8nOogCetNx5Q8R/1g9G+X0CSkyVu0VSvCJodsTaDp+4gPiRQd5xdL+sVI0ySmy5b26UD/tF3rs1XH6eNbUkhsmwXg5zRmbuQKcLBhjIrR+AmM3h94CFiZeNoRl1b+nhbZRJ3FBsANtrFqjcRdyX+XNBO5PCNq7Md0bJG/H6UwCcxRtWQt7JkJPN0QLC1c2IOwtfkwHZXPOinPTCmXbc+s+qmC+92tvfBXUnkOI3DhSb0jnvp9pU+thgh6JaI3FqRWSEBZwxcZXSaaxWSRNtB1EzF6xrFHBlfmzJ6ZVLG5o/UzPSUVIzM4nNkFCpAUcGWnM4Z1zyJGqYC5zl2BaX9f5xSVgOj+e6yCUEq6CqCwYbkIla8waVKAw3z85T2pWAOoFZ/YfU8g6tBUWNEiGq0pIyk6EhScilEIFZxwBRRpCUwrC1bSEVWLQ2HFz1XYNi1tY0LU4Kx0OCdh2LWMQ8NZeU2upIBUxdIiyZNLql+TQ6qWr6aJRiG7wE6FGB3eV3Bh19T7zMZl04m8XyrOCKzCjrwf0pLy/gpgqlbGjtFYoFVrAKsLkd5PxOzYpYaplB9PBSzNDJEUQX6IZAVfjqumvJwoi3bitNtxvd/Qusj5uODM95zvjI3Kk0O2HlfWaingTR3k3pFGx673xOjMMiFlPtTxnAYq/X0lXy+Tt1D2rtz4GjFoZf6u0LA2uW1zkQjthYnMplFQ54irZEClBb2uxFVGFwnXp73ivMlop+xuWEUIUoRwfYLJcoST1GoIJS0ykoUx2UIUV0o6SaRjx3nypO4IN9ln+UlZPh0ZTj3+yLN4CmRI+MsBRPDLlum4ZXEvWjkzMJx6piVzRUV7qfhJ2aljEstxy6S4UefqDFcqWNTXiMXo+fFIaNcl2qli2usW9bmdM0HezhaR5kLniVZZEVfTYAv7v1A2C8r3TcdqOo0+IVtP/z4/M0+o+WCkxjwrwlr20ZRAPC55dykRoisLxJWFWrKBlObCUlapLQutlry6FqC4sEU99WWzKb8zLAGnvO/8mCev3+fJF93hnfFRo84LoyQJmiJEFrVFo5Zu5AqcsrEJ04kJGU3zYBR+XJTvD3Y95AVbVv3ENHnGbbDjKilLN4Jbe2LsiRnS426mYetiaWVMthjTZliYV0LbRoahQUfLfW8VFsuR9nhkVEElcPLbsPxvLbcf3CL3meaBt1RqEX2nfi/WrGLJqm/SoFbKKRX87sXUboIwlnsOhAtP2Fr5fG7BO2NdarWJOp1TTFXIm6jeLPtNLPUljVSq05q1PYDjic0rN0G4sA1r9tRphNRU5nWv8ciLTHMR6O4p/QO7kdPSEXtjQsLaUpt1PXGJUqZp3jK5MRAm2cCAuzIX5mejgDADHBnfR9ouMk2eaduwLVR7ZVHsh/KeCj4CaK9E0aK9MI2TG5yxDuU8a7pJQ9kc689NSSWokJOQqkavfteVzVIdBnqBFEuqNj28aVYdDfFKmqgyJvX5qD9jOOGqNxSuMErCM5gPFTXxrrP7PDMwatdj9nWR9/veWhbtLKDACRJM9J8nB4OHUUipIQUDnK6wDDPbMF2prrnC0kiTcb4862Ot5Cm/U5iuQnTYcYyuaEiEXDRCrrAdXL3c5fytcsbYL3vQLNVT9TgiV99jOhXnQEPGOaUNkUUTHwIpvZ/Y0eCyzoJawcCIiNJ5E7l23h7uobH0cqxpqDK8KBlhE1tGMfbnuB1YNSPn7cT9ZsGm6UhNMH+bWPy4cllTB3ttGhxxDGzyc0hM+79jhE0mLUAmCOcexDaRmi+vG1zY2oKeW5hEmBZ2scNQFnpvjAMIuTEapkZL00lGj6IZMkUrpyOJ5ZG9ifamxiIp9ZhJxpWJV+nTKrhVX5iU3oRhdInNSyPrD7cSPbcVmgvHcNpauW0P/fNXnPyPyOLda1AlLQO5dYRNIlyMyBjpri84f1FPGBRJpg0RVcLOorq4MPbHjbZI5yJYrCmjfek0bB4XNmUjcEVUrE2mu75juOgYg5khhW3JIQ8UuM/ej+HKgl21MS6WtXGe4A63c3aP1lr0MRYVa2uf12yKIJLCzmyFVKpJavQuRUDnh+KLovuIO19J9/gChozhsXONSztmV6rGcgd+7VDnWG+OeYcKH37zLi/+iKfYTg33L5bs7izwF7ZBzJ4CrQk268YCkFbZJupU9SoyszywZwhyozQ+M46e6X5POPdmKjaWipDJrnUqke3uvKM9GsuCWhbjuqCNZmrmmkwo3hApemRnFSzJB3ZOWS0HHnvRBU+dHLO9OKJ7oISdY7jm5nRcTcnFY2U6NS2MVMHoHOWWSL0xvZFUFiQxC5FTD+koEe4HS9GIMJYKIIkloi/RfS1npkTf4u37VYrIvQCMuFSkB90IWvRbu8cS2mT7nu1+U8yRucqmluW7USzyLd9nTMtesCsJugf7qsGa2sh+n9aqZnJ5ZbuxbDwMe8BLUHIBCbkrXkBeSZvA+rzF7RzNWorpotkJ1Eh0FqRWEOGKgLEwTSSZwQCVyRDIUsBSed8MUrqEX8YZqOQq1KxAoVTaUTb8GgwgOmtQ5MqzXUqBDBC1uq8YqgzX5JBxb844T/uiMbIyb51T0XOwUdeRkqKwjVtnZqV6magr763XRysLU4KwnSM7kDbRL0ZS64idnytptIhXd2OD98ae+CYZ8wMzWKkpE98kvFcm8aSdx+3c3nRPrxxCYWopTJOWNd81eda+VLYii5KSs/sWnTGhxWRO+4QsI6FJ6BVNTAUpjTfvFF8qedoCOFqfcCgxOy5zxy6ZAdxmaojJ4YsQt76v85GjZiBIJqqzkujsyOrI7CuGsgpDDAyEGQitwsi1dstRO3C/X3Cx7BkHSwWloVhPxMKy7AR2dv1HfabVyO83ntNApeYu/WgLFjB7O+zTCPZaDqaer2JXMArej+ZwSRWmTcyLhxZ6VSeHZp0jVkmCqkNyEXGqRfa50bkSwI3Fj2QrsyNsbux4fAmXsgAh058O9NcnqzW/vyCtHMNNNy9O07FnOmroHj+1KNuB3ymrpwSJirSe8GDHYhkI24TETG49qXNF0GoLclxamqpZFxp2sa/mUGdpJKsuUsZHI/480D6w823uBab1Cnqjrs1UKjDtBO/398M2G+Z7oTXCYJ+z96Oga/O92Jvv2drXXmRwxtpoOc9aQl31DJSUh+zsfjixjac530fRc0plZbl1NwlyaQJjN+7ZjeF6+f8itM4TuMGZ0LBThl3DNjY8srjk1rU171md8s7+Og/uHDHGBr8tXhnHEb1hBnDhQcBvhHg9WtnzzkSzs+4mWOQ/XUu44wkdPXH0llbcWvVH6mxTXj6dTQMjAtmAMYNjCsEW02RcsHNKWE2kKsScHKPzaG5I60DYlJL63pE7x2bT0YZkwrdje0bCRmkK85DbPYsRjzLuaCK0iZFudhiV0e2ZS29shfnT7DUeOVilTHd9x7QKbNuO7q6juXx4A6tgWSvOV2wjKmk8avRNecYa26iq7ikdZ/x1y33rhbcS6FwEo4UVzMHAgC9soDkv23O/fVSJJwn6DDtHe9fTnRUPkMBsvogz8Ju7AhwE8IpfRJJXYmOuqX5XNrqrUX+TEZ/JYwH6F0VYKpbNmCvwqn7sykY8C10LI3c1pVQZh+qrVFOiYNfNJqPnSgW5scnF6Mz7zLRt0Mk2YDcWP6HiQ3X13sxDZU71QmEQu2RmZkAaHRpK+W/aMyxzqF7AlLEjOn+mHZtaILhU0s6TRzsmN1lQ6mq1VdEkzqmfkkUxIb+YpkeF4DNtSMQmEaNnGgNpsJTFSMDXEmZRxOUChOYTxflM1030TWSYAhfRkZMZo81eNsWHxgBbAV7FidU3ia6LLNqJZTMxJM8YjbmYJk/aegsA8t46orIzzpkxYK2Y9j6zKJVDfZjofaQPlrczDxPPOhow2Qwtu7Ex4FAAmmuLWLjZsxpBMsswsvKjgR0XaUo05Upq6Dz2rGPHLtni3joDRI1LnLQ7Wpc4aQcup3b+3nEI5iMz2Ln5UdCx3KgPcTyngUrYJjTqTMXXaD43IB781qpsJEFeGIU8lWjcjRThpOWsoZQilg2qIn+tXC4YHVooTIliCvrd3gQsKZZiqYtreeAlG/gZT+1z63vy5JHkGS8Cu9NIuxrnBVpbM67yl7Zyr1+Y2TwPcFbxEDbCeBLIbSC18Ni/a3FD4Vm9kDo3R7guVbYIaKuhXPGkuKFFwwO5E8JTSn9H8ENDXCrDzVxEhkKrVq00XbOZ5EaZ6e8KzKpGxJWS7Dq06A80qAHEcg36u0r/ICOqxN7RrDO5gfHYEZdWxpjaK/elLfnbUnHgIjBJ8b4poKuKGItWRj1oeT4qkA07pTvPuOjY3RRibynto3dnjt6148EfWbB+obDdBJ6+OCKr8PzFGa2P3FhtCD5zr12R39PbZtlmFquBnW/RC2+ansFBnzh+9JJ4w0SqUtTHqVdkkVgd7RiGhvGsMwp5kZFVZHvscWPD9f8ysnm0J3vBhRJdBkcu3hKW+rEUSbuYaLuJYdeSRkfcNejgDDjtShSqIE6J5y131g2yc3i1jVxLGrH6faRun5JxDto2EpfFaE/KQl3o3Tn6bsp9CjpvnnoU6drI8XLgvlPisDCDxAJkVGzjr5VZVu3BnGYKazcLNqule14aGylOZyo+rhtIQn/h8EV9nZLN+yqWN+aMYmqoRS9WEQLmu5FNHD0e76+FZLt+FYRXL5QKLpzLaJuMvo8KYpG238g8D6ZTZ+B0NZGToJdutsSvDtOz7qSyF3k/pyTKQ8zCQxU2XouLtc7ajjklMlr1j7r9dcxdthRLMI0MwFgYBIpbbJGhFJCh8zwG9u1CkjEc2Zs5mxnf5fl5UE9xDtA94CrW83M7XLF1zaI5Aa80JT02NA1xsAg9j5bq0qgzeJo3dd2LiM15Wmcd1XbXmDtyNZgbvKUo1MBrvnK8s4usgPNKaCJtGznuB6739lA9FRJnbc/UdOilMZWzUeQVZsm1iaa1Z7+awXU+MpWS5GHXkLbB2M6dBaazD1RhZq5W99QhYoxKBSmti8Rszry7FLgcW843Pdt1hxbDOSmMWeodebGvGqqVQbk8yE6UhRtpJNG5SF9K6xqxKiHoieUhyAgOZeVHWmfMzKppuGh6LoaOdWjZutYAcvZoBdBX80of5HhOAxVJal4VW4uI40IMjKzsSvR3zAgOMVHpdFyiJoXmvi8OkfbATyfKuGQ2pbpqP02TZ2tkLbBdRkd/W1i+L1vPnlt1UyyTs9imu1EQ3Zcyz/qQQdDiT4ITpouG6TjQ7GzTnSlwoIqCK62qziLyuCwVBddG7l329HdL7n+HieDKYjctrXopLez9OQjtzlw5/YhtBpuaNoHF3cziLmxvObaPFc+KWLxUouCH6mLLTNVKKpUVZaG4mo+23i9mEIQYixLWdmx+VPxoKZJuG/FjJjeN6VwCjKcUbcm+skA33has8vmupICqY2cuos+w3YNXUKaVbYBBhPZS6e9G2nNBcsP6BVaxFe8JfjvRn3XEpUdiy/Z2w9sfW7GLgT5EgmSePL3HSb/jt/OteaPc3LPy6ZoS8ltHbAJyAreO17wvOsa4RKaibfGZxifoYBRjKrQr2oNlZP1hwv07/T66c3afEIhl06k0vTqIQRGJNG0EAmkd8Jee9kHxpOmEvDZPl/DAzy6yBnzNJK3qdnKNxLP1qUlNYFsWcreIsIDUBPTSG+is7EgxbdOgEDER52XgPK+srFdM8+W3pSy7aB202dPneDMTy52B8vbMQHQum3LqFXc0sTqyUp7Lc3NGDuti/FZKbyu7JmmfIchecaXSpYLg1NrG6y89+YpOJHfM1vuSdJ6LtvbYvKgOsjn5WW+wp1FMMN1cWOrCj2KBCXaOqbdKHusjZf4sMjnbxBs11mW9L8+twtnc6RwAzf1lZH98GkxTMDMz2Y5RSipFi0BWt54I+JVy6/SSdOw4Wy/Y+QVu6/aVPeXGSN4DV/Uya5LcaKAmT6CjBX+5UQMoNRUitljUn7WkRlxhJLXLs0+KazJdP7HqRpzL7FxD9GZCmIKakDXvfV4qILuqKdFWrReQYoBdKdVUbl9+XQJLLWL4OTB1GGjQTBJP8iYwdaIchYG8MvHpeRfZLDriNth3l75G4nVmqpyzVNIwBabk2Djr5bPddKRNMCEjdv/n3kWNeUShzBVBM6gbA2usAvCBX8zP2VXflDF6dtvW+i6N7v2YLDPES94zFLZkSo5dDDyQBd7l2aRtGUZ6H+lcZFLHJrbskuXhe28ApnMRJ0pXG68BYw5sXYMrlU/aJTIQ634a/5CJaXPrZh1Kjb7iQkmnEZwyTo2VQY5FaHeUjFIcrW9Bf9dMsKaV46IT4irv/QIatRAb9irrZKIgUnGu3Vlp8vamt8qGa8mEjGUiIZCxqodqAFX1CRpK+lVsIWsfQA62I7moTMfCdAzTcS7eJbIHAWUjkGSgJp037B7Ze5KErfXTqbbk46kwrcoircW4qrGmgWFjVTi1/BiwaHkyALh6l+CSbfIGaEy8mDqZRbjzRloi89jvtQBVg5GO8qzC390UmsaMvaZjx7QS+vuZ7izhxkx1xs2tkha2WdUhk/US8cWAKy4zLMv/lWZh6nVOv9VFPy6VeFRTRKZn6XpHcxE5eo+QQ+DiSbj3Mcr6+ad0DyxFdPRuiPfgQhpuL494wc0znn90xqPdBe8NJ1zc6nhwvmTaBWTrZodfDcaqhTPPebMiXXecHu24/4gnnTXI5Mi7wG60iR9WE6wm4i7gn2pJy0y4OfDgo3uW73WE0qDOl1LRqrewkkix5nli1Qg+FNvwYvzl4t6YzU1CcxFKOXq5zs1+b60AWdT0QAaMhGkS4uCuNCFLJmtIlsZ0k1HxuVTHVZFnBTGpd6RFIK8StEpaKu1F0S1lE3pbMGsapdwreZXIC6E9C3Z8uaQNxRHXgTU9eRPo3ttw9D/MyXY6Era3YPuIsTrNuZu9gcSBK5qBqnuaBeDluXEFKORSZeMmQUZ96HfnstjiExMbh3aJfjmi3cSua0kXDVy62RqhAqjuruCmwHhi/cRS0HIPeSj1MzMqdnn3eKEIkQEoZeDV+yQnSyHlrkT3lcGox3xlWHNPhw6OM1kxHAVCKBbswXxuQBD0Ku6y69AqGhK5M12dBTAFEE5Y36ZYwEqgAJb9+cx91EqVHNF0RjhjU1xxT/Uus+pGgssMTWLnWrL4vX6kXp8KpFJhfpQ5DUYqfiLZgks3mLZHC4tjQmRbq1NfrlvJ2SnOxLDFAC24DAtLe1zvtyybic1ix3ZsDIiMwTQnxdrfe7PDH8ewZ0ZUzNBtF4xx1XI9OlsfXTDRLvW0Ztv88vbiozIJDxnFVR3L7Mw77feqeUL793sIsLk3xkBMfk7zgDEr1aytC5YmiqVayLs8O912gJNsmpYrepak++MB7LtLRkL0mcfx+43nNFCZlo5QSgBTZ+6oaZVxy4gmIR5ndmURjUeGVJkcfu1m3weXDKw0G890IvtmokmQ7EplQAnJonWRrHnzuID18zybR62rsDsylJlHb3nZndsDjCLQqyW9sWw0lkKB7sJCHzPFUiQ5Yl9z5FZbv18cC5NQ2BC3c6ROGa/ZxpM6AxuVDp0FZpOlZ8AYprBVaz0Qa4NGNfZlUbUdpeqjlD+bpsSMz6ykVowln6t5mE2kqi7kKjMkrYk+46OZtCq22Fsrs0YcqRO6M8f2piOutBiuKTL5kq6y6qXszSV2KtGPBos+934yV8pXi0A39hl6E1/nxoN4UtewuONZvXfk9O1K6lsuXpIZPmrL9O6e/m5xV/UgkxJLdHOjWT8jh0s2+ne6nstzYs+SZJCtZ1g0XFtuOTnecH93jL/wyCaw0aVpBZqM8/aAWArLMS0CHGXUO/ygtGf7KDkHa1ymhiPwG0eehNxli1xUcDs3l5VLVMLIrJOBsnliguLxWtnMS4rD5obM3Y/DpT37qXOkI890NJWS6ExegDpXcvXlnhVfjlnnUjpGy+DQYFVf8czP6UJfS80TVmpc5htdZrxeNC8TpU+XkC4aUh9oLoWj38kc/c6IOmGrjbGbC0tBuElw56XRZtn8rYqpfO/I7PtSW2JIgtTnUnFi5dBk5tQTMOuIfVZc9IxBWd245LgbeND13OfIqksWnrS5Al4z5oQ9mq+ILRgWTMngSyXTfnNKbWFeasTvMT1dlNnvopaDyoQZ9dYqyKLh0CpCLSxGBRZ1k9b7Heo6tstSnVi+W4OWtEr5nrrBy55pVoHkTZjspv01nlmO8jzNB1p0R+YcbWLkuVJmHdCUzMDMK2NILJqJ5XJLVuG2HLHJnTnQlmOsFvma3MzSXN3YZzO4agR5pQt17o3B8tuyXky2DmkoWpMKGEpZ8nowhNj4vdqnD9Znp/qjDFPYW9dnK0/OyfQwGmXvNgt79qZL+C5Z36IidgXmXkBXS5udU5om0hVQGUt/nXEMpCGQtwaAZrapXvPChOF1TkktunG22AdmO33VUm2XHRvRkvJhPq5QrnnrEgs/kdVZ9+bUsEsNl2PHZmgZhmDau3gFNAkGoj7E8ZwGKrk1l9DxWBium1mWXBtp2mgOe6UnjYaM9AmSs5x8EbDtrgup8bSXak6URe9g6RrmVu7DDQGxKL25AjzSAtZLYTrN0GVDs8nU28BcrSFxb02fikYkbG2hbC9MK9FsyoSTAlQUwOFHx3iijDcTkk1sOVvoUxYD0X16pEQvUxHINpfQXJaorYAly7uDjsziYnVCe5kAx+66Yzy1dA15n3ayDbSI+cSYk+GG0t0rkXG1Qs/M9t9zPn1wsDAxmA+JScVK+BpLYY1JZpfguCqbZVlU3ATNuZnnpdYYIGsrYHl+gOaybAYl7VQnqovQPhDInnQsaJvRPjPcwjohN46wa2jPIyfvTIDn8pUQb0S2jbd8OgWsOGVKnvfuTgF47+aEe+dLUunyLCpG3TpBsyPOuosSWSXPop24XI2ks0D7wKH3A2mZSV5h21n3XDAAehnIR3HuQRO2pgHxO+gn0wuNp7aRubFsxsldsbffV25VwOpVTQzayuxXYtVPiisVL9UIjQnGY52fZb8tXila+q8soy2ClfKeZDbVq6yfSkmnrlKxZzcfFW0zww1Hey6FKbFzTv0+IndRmE4hHickCeHclZSaMXvqZG4xMR0HYi9sbznzSKkaGbFj8cVptqYIZx8YX05hKKxEFcjWjToK7Ao7WdsHCDOAq9Vj2QfurY7YLhumycSD2mXrkYSbmzvOWi1h1njM+pShbqbMawyVmSwAEL1SAu2LL8kVEaZkWz8Y9+kXgqKF/XEF1LjqZZNAyrW3LuPWA6oGCVWvgVp0L7For3ZSovQCoHqzeKitRGxxYmY1BDtPXLYLPomlq+pmXcB9LinNKXiGxtMVXUfrEuPSEPawa0iTWeZrurLpOcDXsn2ruKktAfy2CL+rhq1T/OlkqaFNQHZuFixThcnCXCKs2bEdGsbo555Ds1akiQgGYJyYvf5ubJjGYOXMuTDs0SGDHcesRXFqqa5uYtWboZoXxYnOnicVjKRk3ifTFJimUHxUbK3JWczperxSjdi8XzUWNlfFPVySPQfnZVO52h8oZ2OV6vk6p3MazJWy5SBprhKyiiGZ+y/xfn9mTduHOJ7TQCW1gh7J7J+gjeJkf8EBtE/4heXRpgtPWDvTY3jY3VKGm9CeFZOlUeZOrlVwa9UoRq9rsNdqr5NpYSkNXaR5cogrE3zaLzpVvCfJFhWrxIE2meFc2ORiGueKUVvGC6xGpdk61smB+BmEUDdioVQwFETc6dzBtIKR1JkxXnuhpMbemyg9g3qZu0hvHhPAEwa1VM+xXVPJhZrM+3SDOpkFubONue7pXzeJtYp3e2FyRQ7zJPEZpXRE7oSpbpjVSE6LjqdssnMfmcDMKKlj77A5R33s3XDL0+130KoQkyO1bhb86WMju6HHD55uKXTnmf6ucr4JdNd2uBs6999Ahb43A6XfubzGmDyXu444hJJiKdNd3d5joUTBJGMA7kwn9EcDp0c77j3iSbu+VL840kJpLqz7dOoo9v7GHk3HSnsudA90NtHzu1pmblqO3GlxdrVKMDeVJnwFIKsAAbI3kF6dnGtPH0ml5LdserUnVFxZiqK9b+hlFkpvHTl4S+dV0FwX+hrpl0XJT0YFa5sf8uJJNyd2vad54PBTAbtVi1Geo+w96Tihy0TeiYFUBXdeTNyirQObR/zsOqs1esQWayuXvlqlQgG6lDL9wjAUsF3TlqZTs+tVmZe9k7PNjbiwTaE9E4bQcblsEBVjVAW0zUyrUhknD4Poys6kTtFFsuspUE0zcgk8rm78dSOFAp4FA4mlkaMKcypLolgn5bb4kuQaVVulmwTQaf+sZl+rtcRED569VX1Jr1T2oxopqlhZ/rzeOh4CNwacQHbGVKQjRfrS+KOyHYPMQUmtskyDZ/ANm5IGOmoHYy76wTqBa0dK9TPYb4YexBntqEUoVwNGNzJ72sRjcD6xWozsOgOXefTWGDWJnbda9K+psCNh32uo7jG2ltmmLa5s5NExbZt9KX/IJglwBTRkVzRPjpqqCj5zvd+yagaWYWIVBrapYRNbNrHlfOhZD62BpW2DVuYkswdV5XpDAY+NBeizvvJq+ik5hqkxTYpPtMHEsjPJp0Is1Umqjjy7yloQuRkNtJ27fu4f5F2mLQ0Iu8a6SDunsymcjt4A84duo/LcBipxKaRjMxaTDP7SkWjguNTEL6T4SVhZWqUFrZ+PaVlclxguGrrbwTbkAE1pPnfVWdVEd+Y0moqyPq0S/poJvnLyUMRDuXXE83YWm+3dYssGky3d4idwk5Xfpt60GjUiUi+IKs0601waMFAnDDdsYauLld9Ryo2t2VxNDYXNvtsxMDvHZm8riKilyly0stTpGNbBhIvqpGhgYK5A2nm0VZKzFA8IzaXSXAKYK6h6oFLslT52EFsTywk2WWo+fi5bDgr9/j3mxaEFLMrMXlVmR70tqtO1TC0FtA7EFvU3lzIDuZqyksLKtNk2tngkpOOJ9KIdD6419E8HurvOKsAEVouBD7t2j8up4+5mxeW2YxwC90aPFrt6rVFS9XBQW3dEKW6fhRGqTpri2d7w6K1CgVYdy8ZSFbHXOSKd3VpViDcntrHZN7mrbNFkIDQtTCiuizw3daspojkyD2aBH5cVlBgYqRb+NeUBdq0ozsmcRFYnO7bjMS7sn+V6IK7JELBKihKVKzpXvrmpCrFN6J5OE7kIJ1fXtuz6hokOUQsgsMfJ9p1o1XLgyb1tvHPjPhHac8Gfa6kSK2JxjEnKvSMvkgG4ZPqN2fZF9kB3rhKZOycLsdEZRMzC0aRz2tTKX0GyzmsDmP+RNVm01KQbhemoiNqd6edwPKS5mlMMRVCaiklg1bXMoEMta1BLeufnA4rfiO49S+q1z1bpk9pEbU6qIkhxMK7l41dFqS5aCb8kZ9qyJXZ8lU0pczYtbO7NPXmulKnPYmpAc+mnNWG+NZMze/tSWi/TPh1TGTi3dcjaMV0G7jc9D5aRfjmahqYcqvPJSoJr3XqN1MtGKiHP5yTF6ylsKIDMhO45ebriTptV5kaDcSpMSHIwun3Jtnemnaqfzf55SuU7fVN0jTVgrSCqgDwDEDWqKoz15BmnwPnYFe+Sovdgn5YJLptvis+4oKRgWkiNV/x0dD/npXq4jH7uGTQfc1ZyckSx/c6JEhO4okW56tkSCksUcxG4Z8c0OXTOH1twXj1iFu009xBadiOLdrLrOgWmJpAmh+jDx/PBjOc0UBlOQE919keQ0vdAxC5c06RZfFTbeafOQAqnE91iIoTMGDJDWbQAXDSx4WwZ7ipIMedZ6TI5WU36ajkQk2PIbhZQTbp/31xCV2ZYGNQa9Imp6FNbkGq7bzyYQzAgc6VzMmDVMepICyunjatSDlq0LC5aZIdaBNheWDQ5ngpTFsJaabYGUtxoZZvjKbPYcDw1nUtzBnOOOQkc6z5f65Xc2KYjyRiZuST5CsMylwU3kI8SzfFoNOLkccGcEbMrJmmtiQqrPgIw1X6hUuYNjLLJrqyCyN0wkBiHAJfBesCsr/hMlAgrrhRfhJQotBfQXghr33P95Xf4/330b/Mvf/ulnN1eglMzxgJi9uyiqfSHdYtu/MwW1CZs1AWpCP9nM6tJ5lTZQ8Z54tmxMP3ItgiSiz9G7pSp0vxtSX0lYXVzw24ZWacFzUXRM2QDuX5UmstqJGiLvRRTjly629Z0n1VRlesbTIeBBxmkdCO2c3JRyBET+GELVl4l1Lu5s23uMq5LtF00n4ZyTRyQs21gvjCUYOceNkI6EmSRkJA5XuzwLnO+C+S1Q7dFK1LYM6fWFLO5sBupzs5xOs7FmO1KY8KZ1SlgqmwQ2lmHXsnuYRDoS4l4AT+pt/fHpZpRn1dk5+YUiWTrEeYmfUgn5KIBGPUyp4ZSVzbDWLUv1lIh9/a52pRePoOgiAHDjZ/n19xaonQxrs9R9sx0fm0bAQUcx2JwNsmeck9WDambK7qL0phz38RP55JhVywVrPS4pspsc54rR0oAsH/26zQt1WetQpNxbUIcaNmINVgZLxnYWnmwH/aallzOSYPiz6yjeA100sKzWzXGXLf7Tr1QAEFtFVBFtlEQDy5kdKmYqbXRT7V0OTdKHh0X27352MyeXnmeKDYIxhhLSZO5PcCs7rFOCW1k0U8s2ompMBbT5Pe9cMqakbu8Z8kAJmFYt9yNjrPGtCpdSLMpWyW0pAhcvc/Ezizp0+RnYa5ES73OusRSyo1z71fNJFiFjp8PwVI9+0PSh8CKOeqaeNeuUU5FuFtMJ2OTGBvPGANtiMbQOKtqrCBrCMnSVvEPmTNtbmwh8Mmi9LTMyCJZb5PSYTJnoxEZbeea8+8qxNIQyvmMP54M7SdhPM1m393uzYRyr+gy0vSxWCFraftdEGf0pXul5QyBvadLTUeUKhk/Wr187MXs97HzsPcI4zGlI7EthC5VcaOBj7yD1lm6ZjpWxlNbwNoHxT/CMUeZWozPUm9iTPdUbcpotLVtXDIzP/FIjXl4IIzX7bVUFnNJMlfQVOfSQTGdAcwaGCggqrXN0B9NrJYDF+senbztIVKiSMEmfO03ooUNmWwzzcuMjh63sc/1OxNOoxAftORVRLPQnjm6e6UrdqYIgZX2whiy3FilU14AF3Yd+zvCvQdHPH3tmCeuP2B7vCarcO9ySeMzt7crzrc9202LDm6m9OdSUJipca3l4zBTm9UqnKk0xhuKL8zSxIDmN2KmgGEtREwMHm5t7bk9a5Gd9QPp+4n1CwLj2s/6jf6OEC4p3bstgo9LnQF5au16Vn3G1Jv5mlU2ACEjQUu1mbdO5MK+sV0SdHSszxbWMiKDRF82UE+Owq5tTA+zLo0kaw+aUo1SfW1MNC6EMyuJlaPMWJvLiT4kbNUl8yaFmsZq1kWtBD840+140xnV7wnrCiCYS3EpEWzq92kRK/evNvwGDGaNzWMD1062pjN4amUGa6Odix9q8GBgfTp2xdnYni9fvJlSa2uRljJdbXXW8RiTZqDPjX5mQFRtDpuZ5J4JVVcr7Pa2/9qpCTBb25VydGZ4WfceMRAndjtNyxUt3VNLdi1NJ/OGqb646Bam72oV0twZuZiZ2RvK9RUe1kK0+SFhaEqOKAZes/hZt2YVYYWBK/c5LW0djl5JS7dnWxTzGSm6m1SPo6aYyjM0Vx8W593QJfqjAU5gveqJR83MahDMjXa3aR/acPeA7Mq/pQCy9zetK+keKaXITWMpjz5EWi94p+xcsI09M3u3zDb55fgV0MkRxc8i3JwdjU80IdGW1Epb2I2swi4aS7EdWoaqx6n3qd67eqy18qsGzlqYKDHdY7qq84FZDKzKLO4VTNz7kPeNULKUiiZHAnbJM0hj75m1MPvP1nI9P9TxnAYqYQthso1tPAFdWP09YEKmbTm9JFZlUSe/x3o9FNGrFFETYEKqYPbNNa+dCkg5urY1rUs0lByjIwajD2t6KU7BHpqQLXrMrkQvBkJiZ9GdiVHFhLoYLemvlEFmD/SQa4M+sQ3SJeviG7ZKDp6zm/aeas+f+qJvmGQWR1Z6ezwpZnE7M1kbrnumExivGRAKJYpBYXHbtCOpV9zWm0Fdb5ugriKpteaJZg9eHvQi4JQqFvOms0jnLQ92AXb2e6rshXoqJnBeu7nU2ZX8d26sH1I8yjRnfvZmadbApdCce8ZrZpoVLqX0a7GbbGk021xSKwynQr5ufWV2j8Jwy0SZervj/80v5tFb57z0+tMkFc53L+B809v9HQO6CVZV1F6ZYCWKkmK5TQUlAEOg2vvXni9XtREa1DQXmZLHdkUIa89qmryVKIpR1MPdBdPRxPLaFj0Vhm1DXDcmyE2KX1vH62kpjNeE8bS0fvAZMF+XtoAnSUCX6FaWx0jRE5OgnYlsJQllDbN7d6ylgR5M2x4/CM2ZCZtz4w38FdMyUSyqz8wiaWeu7XMKqLkQwjawe76yWzS0IdEfjexueMie7kHRiRVtUmoNdLpJadZKe5nJd014PVwzUEBrrKOV/5vLrt9IiXxts89dJndlsykpzeqYWtkGH4W8brjwFoRoX0pwzw2shG2+AiCE8VTYPmrP8dWOzn4Q0hGkkzRrHVAMjOfC/NYqp/JMa5cJRxNx3SDRXzFTY071mPBVjOUA68gL+0rGq32C6iigp3quaNG/SHl9/v5QzOzK2je/3T8syNQCrKgBxlWhZtFrzM8VkEdvpmPKHNXXJoOS3exj5aIQj4XQRBa3TIcyTYFh26DbvUi0pp9mLcxVrxYqmLCNOyZhEKVpzYo+HmPrTTnWamsPGOuRZM9OFOawrmtoLWlmD9aS2Nx3YuJtgZgcOwmkbA34LBi2Ags3yNxwlcpCFYZaXSnG4GE2o/qaVBfatvTluZw6Lp2xQSkJUxK0MiRXWhnUvWdODRUdm5LJc5vkhHOWAoLCrhQA8/5AA8CHZM0hrz5mWoBMFmOlZvBX7kuwlJUP6Rmf98GM5zRQcRMQYFrBeDOxuL7l+tGG+5dLsy0fzfdBmoy/Y/1TsgcNhtRzW3K9jYk63WB58loVhNp37B5TXJf2Lb/HQNqaEUrsTAuTomNaN6blKJFFnUB+ZC4lNs2EWfeHQUmbIgZe2uJX00TmlmklpbMDptZ8f/ncgdnUynLi9h1X7btVKOJLIS4steNHob3YMz1xpeRFhuz3dKyaF4vR2Ur/lGc8VXK/X9hrJBVPrfpDdg43OcJo3WirKDBthNz4GfQlBxRhsYxWwt2eFVOyllkLMB0L6SgjpyP59mJ2APY7A3XqzVPFOlBDe5npbw/kzqMuMB47ag+juNzf03iSaK7t2K1bM4FSM0m6mDoup44YPbvLDh1NWCdJ9otTXQRKmZ8IZEpqcdzbp8/aJLEFWoMU4attCs1iwvnMIB2xlAznci/1vCUdTdTyXplsAdXFZAB8Ewhn1sjRjZZObC8S/X0Yzz3rx52Vty8MMIynUFcHNwlpciy6ycy0xsYqB9Z+7zvjKJuekkR55PQSJ8q7LrrSxFHmxpOzZmju7quz/XtaKnmyTUkbrD1BFHuung5s/ILV42c87+SczWnLe66fsH3Hiv6ezCZp21vmAVQ32DDs52XtQj73gsrgVIp2xwBB7mwDTo3O1S9udLjNlc68SvGkgf69AffOwOZFZjcQjz3pbE+R15DSD5n2zHRlloI15mM6VuLCjpFg7IIm2ZeNXu19IyW4jAbWow+2udTqnirGL39SZ1otvxP0QkitLxu/zX+pYuCmCtivfE/RrQjMlUtXmP+yoWnR6+T98y66NyADKzWt5aXe2ITaWViLOLaKT+vv1nJZDVo0P2pO4cUx2xgAe86Hyw5djRwtd1xb7NgtA7spsNu2TLtgQp3CSlhqFGrvH1HZMzbRwdb0FHERkKLtULVybU0O15qVfPCJMQSmyTNEB5uSpnLMZoq5szSphrx3n51TTY5IIGfHKAFXegcBpRmhsUC5KYaJV54BW9OV7E1PlAWkhVw8WFI2LcmUfam0MWZlGUZalzhqBy67kfWqYTc2DEND2oV9zzlXnIJVZuGxFH0Qg7UnYAlNk+jbic4ndjGwLf5Oxu7s2ZWmsSqnNkR8AVKV5akNDafkiMnPgEdV8D7PKaAkw++1rX/A8ZwGKnEFnFgqItzccbQYrM/AZYc/MyCRvCLtROp1FqVKgtzZ5hWXFkE0a2et3s8U1IyjxmvmWJsXiePlQPCWp9NqouNq9GCdaSkeK5aol5niDGvmBnOpM8v+sLHuz/29bG3jFwZWoFQaRUAE2eytoYE9JV4WORchXY+MnSecO7q7Vh1iDIrs++PYmlA6vTpz8V1S/CZs4sWTjF7adagVTuFSio+HNWmzKoei86k58RJh+eKq68e9rsYa29mmN1OzGSRZhOFGE78269IYUvZCxWHnmFYW6UgEP+0ZF79jLtesVRqpE1Lvqf445gdji+RwXYtbqUK2iXnt8TMuS4668Zm7uxXrsSVOHp3MzIrCgFBz0lH2xkmK0Zulgilceprzwp7V1He57nFhKbjdYxG3mghN4mS54070pMGBc7idEDaONCmxtQqQvMhWNRAtlRkHbwt/EcRWYOkmR39voru9w01L/OAYT0xLBMwuzFaC67k46lksRkRguRpY32ttsyvHbi7DMneBdaJ0pzumPhAfh+GsIRSW0iqydF7Y5ygOCjiFtEyz4Lm5dPR3BPUNFyc9t5ZrTrod9/qFSTXUgEn14El9BcxCKsZ1FaDPjE2NGsvcqJqgXJ9/oCqs3WQ2A36LpRejoIMJLpt1LQMP7F6g0GSmU8d4JoSdo7nMSFb8LrN8OoIE1s8rvi1FD5VW1v6CbWFt502tsChFrzK34RhB1p603pcGV1F5Fb1acCL70uZsFRU1BTutdDa+vApSyAWcFEAj2a5rLUCoXiemuxFUzfhRK+3iyjPuFHGQJaOjK6Xo1rxTy/e40bQQuS9fWrQvlRky4xnMMK5PluLp3f44sOswpo6tz6xKb5w+RLYhse2a4kti623eWLfe6g8y69uKtk6SBUIylOrCZs/ikmGKLXEIFu270t04ZHKbrfS5ll43Cl0idOkhRqD20NHJoVtP0mBarZJa8l2ibSM+JHJnm71GA3IygwZjOcQBYkx79tkAQk3BACk7ptK5OKuj9ZFlGDkpvXYup4711HJ3veQyOlgXzVNT9qlKyxeZRC1HR8WqnXqHF+Wk29H4huAyY/IPlUY7p6y6keNu4LjZEYrxW1YhqmdMnil7puRJuhfmqpo5XCiaG/KWD3U8t4HKUpFe0U5no5rLdQ/nYXbkdJO30tdemY6U/rbQXii6BjBRqjaKHxzdA6W9tFRBTKYhmK4l/PFEF/blDuLVytQqVZadUfUnU9GpQB78XAEjqnv6DUtTpdZytO1aaR+U9MQtK9/MZ7ZBpqUSl47uvpms5Wpu15pzrJsUvxFWH2Haist+icSGsL2ixZErEWcRWabOFqPpNKM3Cn0x+FKOyUNeJH4Ed6dEdmVTqCWbtR1AdWOtIi6bbFcWn5l21lnfYKCG2Zo/rHX2phC1fy9vZ4syGm8bJyb+zUUYSlnIa4mpGx1hF3CTkhpjMMZrpkFIJxFZJNswBsdu23LzaAML2AwtF9tuNnRKye0X2Vy+xmGuxhTa3lmeV1wqNKttdLVHjfmNMJdIg4FEdzzNAtSsQtMki/aLPmP5XmX3iJAWzlJNTpGgSGfPlm8zqTFty+5RK2lVsd5OqWtZvcc2teqf4yfdR6zF1Cx1ju2qZZPFmMetp7/tac/26QA/GFgfomMztIQaJQo0bST1Vsrpq1fLZGxlZYzMxGxPs1NaUqRQnIkvjEVb31nwDrmB95nL+0u6K0Ak9sZA7Q3PxNjQoaRBsqXvXDVti2WT9XsWYaaeo0AyjYQ6E89WgzJJ9jnN2pya/aQsbkNaBKbriek0MdwIVkbeFmaqpNKqNsWQhT0HtAZc/aUJRs3xtGym5RrSmPtrHmROMVdGq6afh+s6zx9j6XQuj65pCA1KXtgmLaOb92HT6OyBCFfmokvAVub1gXL4lc13u7KBdWol5aXCzfeR0GQmDfidm91dobAY5TqkwlZXBrNqlGrlkQEgLddAi8W/sROSBSZhe97znqHBhzQXKVjZa0ntJz87EwNIZ6aJvhihpVhA4kVDOLNURK5pyrpJO7Pl16DEPuF6EwDTZZKzZ7ZW8jRF5Go+JkUguytdycf9PTS7BUUbIWVhF90e6C2jXYein2R0uK2bzThTAVLilRAyXRNZNhOdj7NHS8yOXQqM2dvmL4kxBzNZmxrGMaDRnoM5TRblITEtpepKq+g8m6HdWFiQzkcWYcKhszfKVHpqrMLIMows/MQ2NdwdVpyV0ulp8gYii+ZF3L5su20jfRNZNBPtHzaNSu6VEA0ZpOi42HSmRi5ujlJEipK9LShDdSC0NEFlFmqn3hqdSC4lw50iK2tKJVIMbrIJtXS0P9VZ0DWZpo3kLEzr1h7gqbID+028PbecpHllQJqMKWjPrcy0pn/GxyLdtR2bfokkP5vG1cV4WtjDuHhaOLu3QnxGQmZ60cDFwqLjWvZXAQHIvt19bRWwCXPUD+V4U4leu6L9CToDC2BOJc29VGr+88rfV4GSfRGzSDbsjEG5asA1XJeZKQpboT1Tmk1mcTczLW2RceW9GkwIHDaK2THbNds9CtvHbfNsz41xiCtFb4z0y4lFN9oCd7YgrwPvC8csetNfDEODJsE3yYyTBttkKhjSJOQ592uUM4oZVE2OcO5pLyx6nFbMlRMUrxJfqgUG6RhuWv72gSxMrNYmdHTEI5hOrH283zhib60gdOdprk8s+4GtqKUKW6u6GdpAPLJFJFw6dtd6unNr8uhHaC4T6oXhxDEdG4uYG2PC8jbQPh1Y/Q4s7tjvTUuZhap+B+1dxxmn5skwOsKlYzgqLczKpfeD7BtzTpBbmSPRVMWkVU/hrNVEbh3dXUd7x7OVJeFkpFlMDM8TchP2qY5VZk6fNQ5E8EFmb6K5Oq3ML6eWEtTa6yeCc1YN4WrFkrdSYVfKVvfgXAg7M1/0gzAde2vidhoZbmRy4xhPZWb1ald2hFL5UxjOEi37nYGx8Rqk04hfmvA7b8KsV8lNEfm2e32LJAtc0mma/TfS4K/036lzap/OrOnIKnbUcq21/GAuzVL6/EAoZf+51b32QnQu0a5pyyxu3tjzxpOc4jdu9ipSX1LoJQipvk6p1dnfR33eO9pWcKNiAV9rQF/nclqHlPRLXltvn7E1/xIf8lzIoIppOQrA0cEsA5L3VoUDs1VANbjLbammKwJpcnHcDmoC3MEbMOkSfpXouollO9H6xJQdwxTY7FrGdYtcepqNK72Y9rcj9ULKSpKMamFbnHnHtP1E06RZLDsOgZwb/OAfqlQTmPebqlNpCzIe1TOkMJuuAQzJW7fiopGstvliyYH981ICbFeE8flKGi9NnotNT0xuFgR3Ps6siT1O9kFO1Bxpy+I+RmuwGIdgRQejVdhlZz3D1Ns93PaRbT+xSH/Yqn6OImzADUK6DAzbEkp501zk0ZvXzpltqmFtPia1s25t9S7JzQZGsTch5ub5it4aWR3vaHyylNKuIV2YDsVp0YIA8cjotDF2JlzcMfspqIPhmj3M7YWyuJPxk7B5xM0UNxjdvHjK/p16iEvPkBa4oXZ3toqW7kEFGiYw7B4oR/+5tdTCaSbdmMgLZWyAkAnnRrM3l7YI1X5AOpgPhTlRwu5WnksNx9OSEgLiacKfjsSne2tLX6zR903R9hHcnPeu+owrAKhqZqqhmKVq2Asm+0KzekiXlS4uVLkrwITa7bbS2LZQVp+S4YbCh6+JybO929rie2Jl6Itu5PpyS+MSvz0GxrEj7hrGIpx0LhOnwLRtrBfUIA/17dHiJUGbS0OVch1Kr5JazqlFbBcXOvcg8udWGu534JJj3QfoSlm1YE0N+4QulbUPNGeOZi2kYzd7IExDYGgavM9cP11z8tiOlB1Pnx8xHjV0/chu2zLeavEXJdfhQFKYtQ65sfs6u69WAXYnxIWZDebGQGNcWWVYcy74rSeuLOcd1mJ9ikpqq553BbFha0BnOjZGUJsSwU2yByvCLDK2dGxg85LM48+7z8mjA7+1ukW83xn70adiIGI6gbgs7rQis45Ca6pnvgeKtAUsDHvXZCipyALSr7rxSmfXob8HzWWkGxK760vGY6vCy6vEWMCMH82TJpVyZFFjBXNhDmRnac2wtrRvagVpMsvlQM6OTRIz7Br3aQ9XAH/qzIOlPYNx9EzHjnyU5jmUA8XX5MocK+zAM0bVEEkmO0svWFsAC8aAh9in2u06B0Vqye9UK3QeTudBWYfKZqmtkuqmKFfAXxXcemMGXWtzDdj3UFPMZr7MdVsEy7weBR1KSkRL3OB11v/tdSluZo3mCqWwP0eKpkq9QgM6SmlmWj6ruis7xfk0e7ak7Bhh7zY7mP7DlXUw9VZd56rZYRl6hWkiiQF9gTZEYjKhsXNF29TrXrybTUO2xRiKddPOBmpNAQ01FTRMgTH6ucKVUqlTRcZZsWaPXZqrVWujxJSc9SYS0Np3bBfYYW3kKzsVQp51JiLKsh95ZLWmcYkgmeN2R1QT3V6wYBrb+XnZVxBgxo2LwHrRsP7D5qNy1arevLC1lAOyb4meS8oi28SanMwWxrXvRlN+J+ws5zsdQ7xubcZ325Z1Ua77S0e3MTotrgwt+sGiX0l7m/cabcSl5ZTHUy3MgYUupvfYlx3XZoC2UdgDv3ifQ9QmXzwqHicnkL2bzdvMdVRZPG2bfjx3xDud6VOuZfTmSMwtea6Yqd/DXBEjkWKl7uaOueM1Jd6aSvrDzZocbYqxUWKOvKqafG46RrmusF+wSkfdClKKVKD0JLLPreZjZjKlTKPM5ZipLwxUIzMz1VzqDJKmJbYpZ5h2DcfXNhzfPOOk2+FEub9bWI43eRZh4mi547Icq3OWwvNerRBjLH4EUnQXwj5PfUWPwsS8UZr/C4zHV9JjpS+MOmNYyHvtjt86UmeUOoLl0FcR12TyKhGT0Dwl9O8zgBBXpgvYXHY0nZkqLcJE7yfWY8v2/oJBlBvX1rS3zhCgC5FdDGyKm+X23oLwwITeeVEpPphOEyqeuLBNOjcWZY6PRFIX5pYRqd9vhNbw0d5fhYH1XtRzFy0pBBzZq/XZiliJZnlG6j3zO/D3A/dWK9KRI523tPdMlBxXzlI/nUXttcLIgru9PkoLeHYJ3KYyjxTzQnuGYm/PWW5z8U/BhN01ReFgOBXC0ABNYUCF6ZpHVwn1Ed00SKnuSYv3SyWUZ7OuB+pt7iIgd1suzxtLQZUKkeri7IqPjihm3OeMeZVSITQ4bKNTA4aaK9i4QumX9I5EmRnNuQN8Ld2tG3jeg/t9u4T9pmLXY/97s3txLbt3do/tWbCUVWqVdJRIx0BQXJOs6qMKbx24JrNYmAkYWNXSlKwyxgjf0tsGQITM3nl1DhS0gh+MbVSLgLTR+fxruxBE0V6ZGmWq2sEi7J5Okz1DQaHJ+DYTmjgzHtPkGYaGy/qd1YtrcrjBzZVH8SjvO11f1spFfZhNLqZ4qqaFqyJZ540pyr0g4qiNFGu5dJUzzL9fyoSbYrOfsulHcqbY+hcKqSsxweSsI7XXK2XPRbuSzY4fZyxLFUKb4NZ8UrJ3xCsAWJyyViu7FlFOWtOpPLK45LHFBU8tjnlvc8LW9agLD1WuiRYGEk8qHZg/lPGcBirhzCNtpXzLhl+FjiV6y7V/SZmo+8j3SoVDtIXBJWU8MmqcJIybBgY/l/5djSpQSMcJ0ZqWkdK12EzV1ME0CMN1QUqaZ7hhzrbtmXVuTt58VCrwqBs7rpZaMusd4hLiDbMMXT4ls8NtmIyF8COzvmY6MqZkir0J5Isp3MxwlI0ltQKlTX1zoaUk2H43XwRymwlnjrzpbWETZiOueu2uLvLzBFVgyaxzAR5yBJ2O9u+vZZKp1dnKXR3FAViscqRYe9dUlosmTg1FDLl90QRtRjYBHc3V8cZiw7V2w+XUzZHIemzYxYATaNvIsGsYdi2IWhnlYLSzG6UsaKVcsJ5bNXeSXKpQCpVU7l1aWlSZWyW3Srg0ijwuTcjbnJeqrZ3MIku/itarqy5qQD6OxPOW5sIWXnUOHezejG3g9qZhc9py62hNG6JR+k/3nLlM2ybLoY+evG5MO3B9IJyMcLYwzcRxiTazQJOJp2YpPp562nOK1gDSrZF07Gke+L3DawRXXFDBzjv2zCA3F0fb+kzKrhx/NY8rPYmqpblVNhlTM9zruX3R0ty3Cj0/WKQaJyHFK4xB1VuUBVDLfKzPnp+KCVsBmTkIaQe+F8LO2NdaPq/BAGlu7LynY2E7uRlohjU0DxyxAJFaApwWdhxhLaUJZ9VbyeyZpAHG4pVj1YRWjjteV8brCZqqf5J5k0p9NkCe9mkev92XfM7sS/VdagpYuXJ5ZiajzPWqC1EPUlBdDjKD1QrGHxLgRpm/x1VBbN5f41zYz/n1CgRKB2BxhnXmzQ9Ik3A5OrZtN2tP6gYaQsb7CAvTiM1mZpM3X5bGUNJD7VGyVVtq8XMRUauOS95AnAqEhFsYO5Ci6UrIIH2i6eL8OcDcwyelYkuw83sWcP5SSuWSAUU3ClpZp9K8cq7SbLN5LqkYcFOZq2mcy7Rt0dJc0RbhrWz66GjHo8cGAIA5/XJ1RHWMRa+yjba2jdFM12pZdIqOPHrrZ1S9Vso5aZfN96aP71/Rvk/FZUvROa9zULcdG57OR1y0HY8s1rxw+YAnF3fYHHX8t+WjvOPoBnfOV6XXUenknPZBbW2X8KGM5zRQcYPgpACOjG042SZjbfaVet2XggHiSsRRdJXqKJsJoNYQr7aqrwh+djwdbUGuCvqaM97bhUOzsbLjWC3lsYluJXnKtFRy46zzcHGJbM/M7t5FnT1UKusgCfOsWAvqA9UCuh0pLplKLMJR9baBj8d2LMv3WHScw/6Y1ZW1aVRrTFdcNLW8v/Y8ac7Nk0P0SkO2Wj0E8yadK1gppFZubRObja4qa92Ujb5LhLY4Bm8DcmkdcF2JcOdr5ZW8tM+bmxuqiYdzC7ubwuKO4reKP4q88JH7ND4Ri9ne3e2Si7Ez8Vtp7lWdIlNypMuGcD9AKB1jcz2GIiguZYm1BbwUtbw4qP05Ht4cSj62uoZ2iTw2hEu7aDlg17qx9/m1m31pmsVEiqaqz5PDbaz6Ix6ZoZtEaLal1LoR1Hs2F4F3NiskCounTQg73j4iNQYku3IfUwe7tuH6Y+fcvxX2aYJiYKeNLVbtasQ/mtn9zpEBqnWttrJFpTl384aVuqJlmDVGOqfgasl71UdWhiFnKYZm5qXSXO6DhxzKHDv3xOtKfN7IdMMRzoJt8KVhYK3qsT5EdlySDOQZ8K1NBWsH8sLYjFrmkB1nai2VOB0VgzxvQtWqYdnd2gty/WjVbv2dfUlp6mE4VWSC7r6g3kr/NezTwbnTOfU7p8yKmDkHkKWVLWvxtUiUZ6zYGgwaCFuZg+R5XjQgV1btWZxbzO3y0qh+F/JcEq0wpzYU22BnR2WtP9szXytBJJtjritpzdpKZF9yXyomC0uFYFVy2yJcLUHLzKLWDbI4vY7LTDyaTGQKSGNi0eBNK5WCY/RmFd+0kWU34UvAkYrGY5iCpU/X5nMkCULdhJ1aZ/bROorromyODkBpusj1Y3ORXJdOv9MYGFVIo4OdN5O5Eo/M10uwtEpj67UrDsNuZDbtrC7HluZSxOVinGY+K9YF2cp6ncuG4worp4D3mTYkVmHkpLGc6mVsGXN4CLA4UZZhpEfo/cTGt+x8w1pgq1dAXK2AKvO3At4UrMChmvPVUmRyeWZmitQYlNCYqBlMzJx2jsZljpqBm21PI4kb7ZrxyNOUMufaLygVTY751ewLUz7Y8dwGKmUxNjrXonLUojYXqxlP+eVCc4rsnTPra6pWYYCzaD83irQZ3ya0F/SsCGMHbPPsrLwvrI1lUWeeI83aLM3dZDnyHMrk2dhDmBuj3eOpleVpYxT0hCN3YlbxmRkwVF2HG01L43fONrzW0gmpsYmU+rpoa/FfqRuGoR0tjdpcQfsaMO+Xbk/hDtdNoxK2tkDljnlCNjt7oHMoQZewp5PlCrMiBkhyZVViWZj6jF9NBZHb9U6Th1I14qtJXKtzd1fJQrhvEaptHgYEXIkOd49lhlu2kebJcaNf8+ce/3/xkvm36w/jl973R7hzubKuxaMnJz/beTPZRhzWtsmoUEoq6yZjAkZtBL9xc6qVSUjFfKLaZmsqDqCVhi+LmngDQJUFqpRwbstm1RpIzaPH9ZNFLsV8qrm08xpvZFzptjr3KxrMWCw3vviFmOjY0gXGusSFeY+M15XpeqQ9GVi2E+HxM5woZ+sF47tW5iJ7lAid2XJfP9rwnuOeGAtAuB9KKsfmjB8oZn5WlZL8lftfKHjbzAoALnS8j4VlaErE2VnmDNlvfpLs2Ysnwun1NcFn7nbH5PuNNREtIHkODNL+3/X6ArMg3k0yGygikEpKq3qwNJelFURpO+DGItDdwu6RUn6v0Fw42gfQnZW08FH1SlGkZ27LYN/B7Fo8nSToM1VDkodgdvolLaaTs7JzXxcnm2PSZNrlyLBzsPUzswNlrWpLr5nKiCUxE7i5ZEfL84lV1RS/kVqiSw02FOYeVTVdJLIXxEeu9IEqOqQSHM1atwWkCswLe1Ndk2d6pgL6ykqWIZOQ1wEa062k6NhGq7q7yppUwzHvMv2VXjRTdtboMlmPpea8NB0spdq5K8ByKCkPsPRjZXiz9fZxLhv7MJkdgHNK00dSk9Flmbv+/dxVM+bEmoVUEXkBYlL1KMUh3d4gBvqdaX9EdK6MydnBZC0sdBJiY2nZMXretz7m3m5JUmE3BaZka48Xs7UPPtGHUqFTnrvOR3YuEEtjRHNkL89l1VSlcg5+b3oXZk8lY2C0VoqpgLNjrtb+KVslUMqOi6Hlve6EXQocNwNJhSCWDppFuOXY7g9L7m0WnH/oOOW5DVTSQslHJXKpE6YiU2Hf8wL2gEXsZqV2T2XGANpA7NWsr4PV1IvLaHk4RPefUVNJfhAWT5fqio0SNtlMk0JhYqLOjpnjiaDBcptzSa9zpo5vi7BvENp1WWiLClxLFVJzCcHZQpmD9e+Z0ynC7FPgolmqh63OgEcyc1O/OdXSFQGrU8LWJruWZmUaKNchWxnnYOLJ2gm4XoOrJY0Ks8BNi0mZgUFbTNLgyc7Zz7U0b+eeUblRvTMkG5O0em8uC7Vj+6gyPJZwGwcnkWs3L3ACl9uO+8OSB2nJ/xhv8o7NTWJ2bDdd6drp5pLiuqnkpfVkMkfYchK1iVi917rXMqmVQNgOWwAZJWdNAb4+2oKUQjF5qhUddSPrSqTd2ULmfCYP1uTQKh8sHZRboDU/irEIsbX4WIQzS/uZeNNSh3EpheGw18NWmVaWkuiu71gtBmJ2tIVxSklozx3jSaZbjTx6csnd9ZLGZZrlRNx4A/olBZQD5IWSFuZeLLpnFqt2wAG5VtyUTclNBnpNJybzZ6XeWjUA+8qbYM9q/1TgfHfNwKKALjLjykAhSZCd9X7yRQuUr2zk0trmW5mQsGGuTEmdac/caPqw/p4WwGjPhSsVgdXLSCYrrZbikFsB4HgNxpvWMV0nYZpKBUkBqLgiJDzz5I3d15pmSo1tnr4YIKal7N1dXaVQzVRrWCTyuZ87KM8plsGQoWphGlWKO2tJrW097twADn1GlhG9DLT3vOm/Frqft5WtqVqCKwL4qiXTYPd6vi5VsxGuMI6RmW3QYnHvSjqkHndlkmZdVxLYeYhqmdOubJ5Fn1GreVCYdoFh1xCaNFtCWA83S0vEY7MxqKxV7Vo+G9uJFq1dYcqDMm0bHmyaK7oMu17dyY7rR5vZzCy4PR0/xFBYAtOGqMrMArnClkzJ723mofQPMq8Rp1Urwsxe5FJCXJ8zGRxxCOwEdoOliTRf6VcHuGCC36ZJxG4yQzWXZ83KVDxPXJtmsfO89+VqzAfSJ7p+4qi3ztSXPrNxDSN2fAZW7JnMKmZ0WgBW1c4MNNxXs/S/W0qowcCJQ+lCpHWR1iU6byXKm8bxoY7nNFCJRxk5KQKVslFXiq5S1sA+6gOqnoKGki6y6DaulHwScW0y4VNyTNuAbD1d0abUPLwxKKbo787NFbSK9uKy2IoHQcUezjCYb0ulxqvqvlbv1LSM35m+paaNZup60LksGUqn2A4eanqYDbhJhEWpdNidyNxrKAfQvtDhsfo2QHWPDVuLqKrXgNuJdYTGNpVaKSG7ckGvDmPbLQ10NT0ENiFK6/TZ6jpDuPSzBwfYPagiwNonBiorBN09uy7NR6zZnvf4NhGT56gfePzaQOcj/+rBR/LezSlnu57dFKxUvYjE3Oj21UmNGU6lY/vCPTOkuKmU1nXRFrDSGwXBRJBdmn0R8misUBVP40qqqkRFFBYCDBjnrphhBWNsxAGTI26DieoKfQ8Qjy0lE48hnPv5kg/XTYfkxz17oMWi3+9Kl+0CIsJaGC6sPCeEzFFv1uQ5O1uvN8Ju03LRtWw3HU9FP0ezKnbfpZACeZmtikD2rQ6qtTvO/BYs/acl/QeyBpf3Hjx1LibKXHLGguqpbWzmUAztA0dcOmMujrKZVnlFFgltM1PrUW/Pjz3b+828zgk3GUs6V9UUw7taKabOvIncROkYbn+GG+z7c12Zr1r0bX4L4dyRxtLIcSgLeWObrxvMSK45tyhCA4zHBhDSUufN2xXAIamwU0tLP2oUtk1L6BLxRpyBA5NDdvadFPHqPMX6XCoCCpjbunK9jamly9ZSISi6sCoqGQwUqwPGYky5teuW2v26UivFagPLeU7Xzb3Mm7mLeQEy9RmimO3O/i9uz8DIKMggqFifGCnVJjk604sNZoIopbR4aPQhIe3MXq4isXGo87NtgjmOF1dWYQ9GSiqDKLMtfz3WDIxdw6ZpaYI5kafsZvdVYBa2Vm1NzJ5hDGVjdw/Z34ur3kNWaoyK9U0rDEstD3ZFmOtHMaG9NIzbQr3VpfaKViY12fYCFXZO5+aFYzQX32p9v1ha09YKKmr1TnWabZrE8WLger/lpN3R+UgXOjZNLDqX0oCwNIGaxsCkxtZJKZ2uVvu7sZnZL7kCVqoXTB8mkhoL8z8zntNARVvzDpHiJDg3tct7Idg8mQogoWPOR8/51rrI7Rw0Cd9Yd2QG009I9Uuoo4pyo1HKw4lVTcyVD6EAj2J1H7vyIBbrdwAt1UfuPBMGRZIyLc1QqoIqF62/SLM2gV3s3axFcYnSM2cvRAX7uW5gqTMBr6UEillUA+osJdGcX4mOK5iroGm4cn1cWYCuVAtU8Fe7kWpbFgWnyDrMi9VcqZAEQeY0QtiYlbqKRdipN2rdlSqCmhJIlcIV5k3z1qPnjNGzGxpSdrz4xj0A3nV5nXvrJZvqp1MrDsQAmitgSR3GsAQlHWVm23KwbqM1mmuyRab1Y3wmtBHvzbcnZbPwr06j2mTcKtJ1kZSEVBYnSUBr4NntHLkvm39hsJgKiGoTrk1M1xyytKqzyQd04/aAs6SOmnPT6qSFztVJ08leyyDRrrF/EBibTG4jF2qanXTRELz1xIn3Wu7tTiEKKQTcIs73Vgqor5UXAPHYfC9cKRm9uphqKW/VPpHaTDoynUl7X2Yx9syesQcYFIvxtIDxmpR2ENXV2fLluXXojYlmMZG7RJQW9W5urFfLa8mgrZk7jtfKc37h6O5CuzPBeDVNDCUwmH0/ShNHayFQnJaLZT9qc9fftQ1lWsks2E2dQNYZ/M8MQlvS0p0xUrmUobpRSkmzGd9JNhM8mxuOGBr8akJ648hdMKuF5DxkX/oOVWbD0tFhYV5P0SnRB9PPRWDwSJ/Q6xPiM02brMQ27hv0zWxIuTbVewQMD1gX7lL6Wj1KGjODkybP954k6AS+tAqYgWtxR52Zy1C8g3KwCpry/GuS4kEjc6WMTTzmZ6y65yLgFtFKbcs8z92VdLS342uORvrFSIzeynGLB1ZN09SAVgQYHOkycJ4X+CbhfW08a92AwViTlN2eESkGZ5oqTVXWGw8OBxWsAIrOYKaClNqoUAMk0X3jx1KtNZ9/qd4Rp7PupWkSi3bitNuxCBO7FNhM7WzcVsHVGH1hgNxDabWUrB/R5djhRNnFhiFaiiml9wNdorM/TQUiYMAtTt7AT9p/dhU3b7xyXsqc92XpIx/qeE4DFQq6dl7JWWHypk8ZC+WsJi61TaTQftUG/dzvGytp3Rw9E8YMyOBoLkw/4UdbsGsawO+kUMoWfcC+eifsCjbSkr6Roifp63fZJhy2xSk0CJO3SHW4bkK/Wv0SFzBc80ihcvZmbXuadlb/B2a2qApfuwcmmE3FAK9a3tfosYq+6uZd89MPp5NskZqV/XIFDHXZBLNFOe5cJidTsbvoHooCXAUsRcwc1pgjb7Hyr92p8ybMke22VS5ebBF2f9dKN70KJ/2OXQxMxUPgnfev24SJ5g2QB28pmavnU/xdqkDaFsN6o2xxlD5Bl9DkZg0KalRrNUiKY4DGcuqy9nY9S+TmVnGOYqaxtwiq15lVAXA7iyAVoIlI6f48DwF/MrJYjKy6kTO3YHdckGSyBVx9ua+dGnBo8sz+5CLOxCnpqCCs8vnTaD4xbu3ntIkbBMsdALvC9JZIlSIu1XIDpbUyRt8n0taucd18ZnA9Gc3drUaaa4nLZokkay1dxbduhCYJ8ciYozlN+LwdXTexvejxT7X2+0U65AchXgSmqu3oEinkOR1kguz9HNClAZas+xSpzRVLT03HQlzsTePqRi0ZAwyDXGFhdE6ZugjuvuK3loZNRxYo+KE4LRfzr9wW3VdhD+Yy4WC6KDc4fGUNi7NuluK6e+H35xaUvp+gn9iG1piHc29VU4N9TzySWbDpGiFrspLwJHatKEHN5Bknq3qh9n9RZmfnav7mxtI7KJeAaLB0szid2SgVLd23836TTvLw81CqY+qGW3v9oFhgGZR0nGZtiwwW+cymdlLAR5P3a3fGfHWc0i9G2pC4WPek0c/iYNsbgGDl0M87OWfKnvXYcr7p2eUOdlJSZ+WZEYp7sYEIa66YEXFm6qgm5DVzs9baLiRbNF2TaRfTXDUEcLWZX2UduAISRCq4q2txNlaqT/hFouvHh1iQtjVbgj5Es6zPxppc77c8b3HOjXbNpJ517LiIHZvYso0N26lhElfWR3OOVQAVcla2Q0vKbk5pDZOJinO2c5NyLj5kmsYM4ER07uUzTaXj8+jnFjLV/yqL6RWjU4YCvnwfCXniQx3PbaBSKL002ELrYhElifXo0ZW5QbalP8M0eRMKFTXzXGJLoXUHIayNq6wt51N3BSB05tBa3SyB2djIxbqYKb7QzTkIuxvCcN0WqmqR7YvVel7YYgnmvzJcs804d/u8aAU2frd3mlWvsyq/5pmvmqClzjxcmkulPTfDOdFS67+xVVsLUzKL9QojOk902X92jYCrH4oWel87o5x9l2Yzq93WW/VBKIt8BVNXRI+10+zifmbr3Gyo5kK2aoEG4knk6MaGW0dr3nv/hLP3ruz7ouOp82NidIRgK9pu2xKHckMqqm/yrIO5WoJpepHCAlS+V/bnHdoEpEKf8lC+mSzo6EhVBFsAnIxC7gRf6OLgM5vylrTM7AVSlDSICahZQlc6E4+7xq63N41C403gFkKiORmt/9DWg9gCmVvdf6wDklHnBNDRm5Pn0WTRphotDcYK5dPIeFw2lsHNbJw1YvMmiG5M2KzFIE1aE3nGKdD1IzF4xk1jJZwF2Ggp7XZbx/CgZ1pGxBUNgXe0D2xjdAnctkTpzs3VMTo5oveW1rsWcRs/+5FINFpcByF3pdzZ72+OGQju2R2/E9j6uadP1QDU5zB1QGs33tV5lMxsLbdSOt2CSzpvZC7b75gOCNRbiwYNQKkA8YM9T5UBU8omfDUVXZiJagdQBchg7E7YwBSswk+DsnEdLuR9GW7dXMtcdIMwnXVIV3decH2k7YtT9raxeVH+iIoZCRYwo00mNuU5EoUsTFfM6GpaXSvgKufE2sTWRNMMVT0Dwr5xqa/FC8XrpGjQSGLpvAJ+tQQWpmuSfcajGAY2i4l+MRJcLiJY5dHjS1bNyNPNEbfzMbrp6O8YOzNey3CsLNqJ5y3PGVLgsrE06Dg05CvrWvX0IVXm6ArLAnM/m2qfn0ZjQ2qllXSJZT/SNdE2bd1/RvWKsd49rqSj3Xy+tugo2iVclwhNZR+0aFks9TJNVkmTvMyAqaagUnZcRGNFxuSJ6jkfes62PettS4q2P1bTNvHWxXiu4ImecQp7t18xDUxN49Qqpfpd9RE2gW1GpASpnTMAF10xwSxsUZ13Sawf0h82HxWpCLoom6WUMKalwrWR49OtNVeKJW/HnqKcP6MYJ1VXywoizF6a0hCtlqyC85anlnG/+GXPHM1VTYkfrE+PeiGusi3gkYdSJ7mF4abaAgtmarVILE52hJBYX/ToWYvbuEL7W+WLpUEUV1Mv1Tm1phmcsTHVkE0Kg+BGcLVZYPWXqTRpBWw1j8t+Is9VB3WhKiyLZqt40SSmRA+RTermzU8UpIKstAd8VTNz+TzPcA3Ga8kiP8EmbZNpViMvOD3jidUDnrc85z3XTjnbGgW03rZoLoKxUnJJdPs8tMPo7jajk1HrUBZPYb8gV7BSgUyJXkKT9rRrWXRUjKWQwaOxncFX1UNIErxXmmBK/NUj97k4abm4XBBv9/idm9mb2kzP/CMMlOQspGgdUkMwJ0onShsi2lnFwJRtc7CNsNzvKGjL/5+8f4e1LduyQsHW+xhjzrnW2nufE7/7yce9+YrikVBIqPQwkpTAQSCEgUNaaWDhgkGCgwVppYmVeAgslAU2HpiILJUo6VWhKr4CEvJ+48Y5+7PW/IxPL6P3Pubc50byMnhJiVAuKRQR5+y9PnPNMUbvrbdP93iJQ0UmqCV/i+rfUNW3hYJuUhy1YwuhYb6NqF+MKuWM6AUsgiKLEgQYG+JQX5lhAUAc9Rq7D00zOF3lmhF12fOKyr2SvOJCaKLy+uFRIxHWj4D1G+oXkNeoVukX7RzD1aEa4wqJNgo0x1cdMYAeOukmat291f8u7hESAMwSAK9GXEpC3wuCZvEaYuoc5a3oC8abWgvkO71mGtMB8CYI0ZomGyt3W3p/WHOxvWlokfsIJt/bc1+1wK6DgJ5HXT/3alq+uzLr5wKgqe2GqimqxChBLNnY7nMf8ZhCCz6OGxriuWAYs3bIjXv4Xq1a6NBzhDvXAgBlBs/UR7Xe9DWLLhCyQjrq+mRXJjXubsWevEwBwKgGbPUWQUuwxkwLlwpgnDK+ff+MT6YrXsqIJoTPphdcwgaG4Lq6oR4jZKCNhG0OuG0J1zLgo+GG+7TgHDesOeL9NUKyFsK82Wg86j4Jl2jbWmxCeP98Qi0BRHrfh8uGlHQsdEoFd8MKJul+Jm7QFhj9cG+NOq+tF64ESGwI54L7y4IYGtYSsG0RJcdeFNWg3ijLoDdvMZuFK494Gib8KN1ZHpfyYV6WEfN1QHs2k8GgryNJEEJBjBXnMb96LU9I9iLGC5R+yx4KFR8HOT8Gtqa6DHmNWvT4r/s6zYy2fvWy42tdqHj1T0ZoDJttTHYIXV+mnSlts1QU6u6YziXpF5Ns8e9nVD/EOgnWNhtX06iqxwoNH5/40zXB8Ciog246vOnflwm4XQj5vqF+khEGnd9xaNiWhPlxsvklIT0x4otBaQPUSMnmvm4777k95Cof0Y6njugeL8Fm546gdH6Af0Y+fF6R7kvhn1l9TKA22YAy9I3c29aA9z++AzIjPodeDPXuD76J2WtuRjI8G/I1aGfXjFQap4y784pPpys+Hq44hQ1MgrV+AgBIsXbmfSk2FnFpjRUhYrLR7uXSiZayf6djRVchHUAsdar1/259DouomSU874VuG5vKbh8y3lzmDs1+enrBty4N/zF8jB8+joAFhlY7WNqBDDnEimnKmG96A0VznhzjbnLVGqENFWUJ2hE7tD5pUec+CNFC2dY8AgsrYGRoB9DMIlx9Gr55/4zzxxv+t/r7gHXUwlOgXXZUmJ0zQwqhANhCU9OsWV3/0jljsLDEuZHl6RiaIUBYgnqsRE0UrncNYO4w+7jp+C/edDFunxLiJ7PO8QvvIwHR765F9Q3isgch6qjTU4Sly7hDJrSgJHkaqXNHHAEF0DOwytkK+qoISlhh4Y3qeuwSfhD1fQYwDtlV76U6Gpn+go58xhfqviq+jnyPCIvKoLdvZLSU+jVrg5JNw0+CFjr6tWnxFxhtbD2ry9WOsOtJG0OadBVaKQSMTUfdAt3tHdEo0D8HgI3RJktjrgF1DZBJTRGHoSEEwQItfru/VBFwVY5NJ8Qfmh/yKUw87I3WFDYAMij3hmy9kbmdbsb3EHPEpkLAxrhdR/yWvMEX8xlb0bHDD9M9LsPWxyB8nzF/W3lNVIHhxxHPuMN/iBX8keB/mt7jZ6cvNGn4NqJsEzB7hplxhEQbr1YISCoFblA7hXaLHd05jRmXccPdsGIKBUwNRcIrlRCgsuoYKmpktKrIYhd29P1WLRZuy4AY1bCxloCWWRsw4wdWiVg2vXl7wx0Eq/FlNAOJ+qipFdY9z5AsGpR/6X4oTYAUKsIoqEPpKiYtPvYiJFjxU0wS3snEjsAcHkwq+xdRjp7094/eAP+Uid7v4PG1LlSUS3BYAMFQiaSjkZZZ0ZbUlJpQd6a3dktqtw8Wdcu82gWM+6ZGGQjVzNus8ypn22xW7cqGl4oyWcAhgDIycLcjEXFBDyFsUQmQ5dJAH204nbKyqxsjskAyI3yRkF60qwuLvoaTdJ0ImB+Md0IweaJAsBPWqBDE3G3DqtfHeTUtqo20y0htEgY3Y3Lmvm+uXGzMBACDEV/vDQWpBJoD4osWVD1qPqJD+k3NX1USDnRujwR9b3gK/ZCRE4CRMK8D/rcf/gz+X/RtpFBxGTKu66DjkNCQa8C6RuWMmGFVR2UaaaFnqaEyVlAUs/SmjqJQEMRUuvyPCAjmlklkpLXO9gcEAW1oaKJdIa+6EbTh4EVQIp5uCruehozblnrnL8DB1lw3m22LiqLwHrhGh40BAAKr74KTBvv9b7Dz/WXBKRU8LaMmebOAx6qE8M1n0l6I6kZabVP6X9/+Z/zodo/fun6K9EVQFUa0QM6iowwJhMJAST7v1GtcKwMmWZTHAdFC2nzkp54hNt5kAd1n1DstfJYxoI2M049I868W4LoGtG8IqqfJsY7OKJMVJ7STvHkvuNUbSHZELhhqJfo5ZBBDvnbTtpY0HVoidafkMJuPUNHbSRjdYbWHdTKQz14g6XOFGUDTfSHf6Rr00ES+oTcBnjlUjRAtBISxol4IFbG7Xzd34XWkyPllDTr+iofRK2vhoJ95X7fqkKvXGLD9Y9BRrY5czEZhZcSXgCqEG4A2R/A1oBbCdiGM04bztKIWRu4fWK9pbWp6F4J5RPmeEmXnlpAASdAuOwoTZkZJAhkIHPTgdGJqv7ft+4VACehIuM4R14PC85oaHqds4wc1ccsfAXlICC+M9MIITxE/Od2BSPByGfHN6Rkv22ivIfvrkCLjrm6Uok1QSRVTKnh4mJEvofPgHt+f8ZImvJ8yhlgMXZB+gDMBzvFwIi5zwxYaSopKV/BRXCXIHLEtAdvrJf4akcgM+ZDeUbXwy7CGxNVExxE4S48IGIfSww4BfZ8p7aG7x0cg0RE0NUPmCMWUO160KFcF/bmaKKpMJCgh9IJJx0HYi5av+PhaFypoUALhuaH5hzcJaZr04ufVXcrQVSDN4GiX1OmsW2HAaoc524ao6AT6HDvfSQ9kEyasHxNajD1VdXiyw9kTkhM6pO6umr5p1lvE3EcWhPW8V5oqVzbEZrHntBm1SyWd9CpkG3sQCBHqWccd3qV1Doa//gFV6UiKXQ8AEBhSZe9FCxPtimEoxMefPWHNCbenqWc6gHcouksYoV0Kr8BgULiS5KDW+OLXliAVoDWirIxsZmG8Mtqp4d256IZcCLQG7Qb9wA9iKbMACoFvauZGRcms5WNBnLTtc1tu7zLHMYMArJsuBSfEMevYZTW5H7PCwHXYIXYp1r0SkK8JP5AHTcddAmYA19NxhKQFX7XZPZmyoZaAHBriqJbirTG2EvFFicg59BCxdphrixkbgnRDFSFcknaW13VArUG7q7Fq4GEDEKAcFuh7zdeE3wLw7uGM796/w4/e3APvztrFb1qgS1CfmXrW70LTZcXMxvT/G+m15I3MmVjvW/ejaS69PVU83M8YU8FtS5hvI9YpAYjgrIGb978peHe+Q/5GQbrfUIRAF1W84DEiHNRgvgY7T+im91adpPOidI0cFD2kPDEvpMud6N+fxBoAKD/F+GnpRbqyT40c9ZqUaUdQvsx8zsnO/XFAaIWwq7US0DJr1srQenHNMPJq2n8PXiw13Qf0z8z7KImGWooWpj4C79wXe90K7oiimMRegkqPJTVcLivkvGE+DQpMkhbIt2VEfh4Q30ctDE8NGBvkXLBd7MB1GbARKpHUvK4TaVMzmb+ZZy6MFoOqMO3+LmtQlZIfslacqaSbd8TX971EyJVQh4qQqo0t9H1V6KiKBJCXiM/lHu8eL/j36VNFLMxSXgjm8bJzarqyyZAKALiMyo95Xge8WxLkFlWYtAUsqVmQYeumaEMsGEJ9lUDchLDWiOs2YMkRy5JQFuN5NYCssz0GOepmaf8OogTmbvNgSqxq5nlHdIOlJzafpw0xtI6WVPNaUe7Mh5XR64fzVrxxcw6eFzWBW1etA0AkARPMdVdUbSWEWgVoem9y/q+/5pc9vt6FSmHgZIc0AZwqhqkgpYLzoJbLXzxfsM67sY9ntjhcys5vEXRzo3Zq4GjutqR+FHHGfhhHQXpW+d/6kWB7oB3dYDJ1i8LAxQyW1NXTTZAEWAmU426OJkC9BsAUShKoj2vyhUwieOTC6A1MDP1sYrI91o2r3CsL0clwTpjUwmnn3Hjn2sPN/LnJOiMilLsKvs+4u1uRQsW7n9zh+eWkUr8laMaFFXjO02F3PzSVj4/lvHjr19yheN+bMkBF5bg+D+eZgdvQZcrxhW2DtW7TFqvD0mFRSLpzga4BZYwYTxkpbZqFs6QOWwbWVNFqUkNflDE0LBuhmINlGkr3efDDR9Uaei/W59SvIRqhPrNuGI7gOEeB92Kw+WiSgBgaNiPOlRzQXpJuTEPTrI2xqiLNckNkVpfdNUfMJSEYI1/seaURaFDn2WSut+uaUK8R6V3A8/qAfzb8fnz34R0+efuCH7wZAdIiL97UyZUr0Mx7RzJDCkBZuSPR/IWq+RDV+4o2qOQyzh8c3kU3xvtpxZv7Bet5xo+GO8w4ocWI0w8Zd9+ruP9PhGeJKOfSs2IoNrRTg4yEcg8tYBd9DV4J3IzcykBuuhY9u4cylANhXTPYfEHGPdRSopu/6T9xVo+kOHvRpWvY+S11NKXasN8DAHYpt3XTkkhznNysrcIUf1r8RAjyFwMkCOLMnStTT2qjLzP3tes5Qg6PtWiHcCE0ajhap0rUtXHkm+k6tzVuRoV9L3ybcb6s+M7b9zjHDT+63eNxnjAvCXmLSpK+qdFeHYA2KRI0ThvqZONXe7TAXcWmh6g2YpTNEyWbOeFGwEtEy4xttIP6FhSl/KCz99Hz/gd2GdaAtjJkCMhJ10n31GLpQadUCLJp/lWpA9yZnAwpL+e9SfMYg3TKGCd1fK2NMGfNCMs16D3pUngE1GY8MQDBHGPv0oZLWnGOGSMXRK4IJFhrxGOe8LxN+CKe8UTA5t+HSOfTadq03kxqgKcGbumwlmtllByUD2Jhic4vE1Zxgqcdd0M4YZMguxJoT15uQn0UZ1bFSuY1JSGnhmzBjSnUPh4ikj4eYvvvwAyuytOpldBYpw0qC8dXfnytCxXaqEvVkJTw9+Yy9y/leRmxzgliBES3ZofAYO19pOF8lbgScjBvDLvhwdrh5I8E5UGh6LAA6QqsweW2Jhc97TAxZyD5ovWFYIc3b2q7z24vzlqQbG+pE+skUO/gykUVCWJFkGfqOHwJoX7wu/tieWvVSSXEl9Clly3B0lgNhvNOBejoS5/neyFTNb23FQa9RNT3SQsSP5iB7i1z5PLsYyCgnVXVpPwFhTybE1z7tXHoGt2q3aF0atr95od28PmwjalQN3HaLfkNHVsIZQ3gi5JnpDHipC5t2xZ7QigR1Fm2BbRW0dqIzQ72mhpC1IJGRiV+CgFSQr+3lCav9yIyGwdAv8862MGYvMLRe0tMZUCk5khNCPOsJDiedfYgg6CeC4ZzRg2im2Gs2GJCzYzlNuD7a8I4ZTVhOqgO2OSt5yGrtwILXp4GjF8QTj8O+Hz+FLc/kPD2tIAfMoqx9YPotc8Xfa9hJVDT+XqYCeM7VZVRBcqFsDbSqZoRQttoqKSjLRxw40kLvruKh3HB7ZQgHxHWYcB1TJAYEFaNi2jfm2yMA0UbWP1ZgpF365MStti8d0iomwTWUcei8cU8WaohWY6s+gEtpF17UYdTd1XVBHNWfxSbuTuJ3QsWifo67vbs4z068Go0Ndr3ArL9xVPaNVeMqpqZsXFqZEBHP4WtEDM7ezRDY0aoyZso4hhuDAl8+GxAS82aAdoLeW9MuimJomzDlDENGe+WE35c7zBvCeuSUF5Uyh5WT5zX60pnLVKmISv0b0RwMfQmDG33MTIJOy+0m6t1jhCB14BmTqXBbCUkkfGRtNh01EPcC0pstDW7ihFokfdoikH6dtbXmo+pM5tJn6NbYvfZXhyp34y6qO5us6S5PFXPm+4tZXtPQ+iOuq2pKucpjpiiurK6y20TwjUPmHPCVoIe8lNFM1VXDwFMOqo5klp97B0OCpySGNtQkEf1iCGCea00xKg/97hOrxx9fX9QLp5KsGvVM0SA12PvKgCCedfsHJhCRp4CmzOvcuoSK/l4KYqWiqjIoAZRpZnTKL7i42tdqMC8MagyRIBMCV/Iucuq8hYhczAZpOyHcHZDKeiNZYcHWwHSEqHcNYRKiI/auZWzqolkbIhPEXFW1n+XGBZ0BMbhYGWtG8w8GTdF7TUwbCYffhbzchCUE+MFhPygH69MMGa/vr8Wd9SiZ58UUlSFAPcykKH1YgWwz2gHfi9kGJAmIG9PDvsXgP2asV4vlAhpSlKkTD2AS4KhUAyEG/rIykdUnJXHWs7auZQ3RhB91g3QN2Ty9+DvoxkKs3D3jAEBtcGyeIDwPoBy6HJujV8/IF/DziMASd9Yb2tAOulm5MQ1DlqEEAvayqibqiYkM2jR+6sWVvlgqkZ6i1hkwlGW2a9h0IKF7cBoSPAcEETRIobQ71XnqWAA5tto3iLUQxkBqPnUULBtEUTA3WVBrkHl2Yu6Y4agiA8HwXhZMabSO5+BBFMsmO9H5PuI6XPg/j8ybvNb/OdPqo7PxoY6ufPxfrjzZi6s9tDcHOrS+LAAvLE6PCdLt8bhngOAa8TzfI+X9gA5F4yXDacxI6WCa5hwDSOG94z0DAzvjCszCMo928FsJEcQEJt6mNgaaINypLp1+qDEXy6OcBhnpkk/MD3OohPFoWiqsAZCarjmodE4rg8rHurUUE869qDVUtZFUVLnPSBqAdHNxQoQiuVymdlhHT0QEFp4rOhKRHezdTdgJaVL96vQEYab5+1IpEqYrTtmssaE+nicg/SRRWDBF08XbI+j3cfS87B8hFwu0r/LdrCQb9VTifUz19jgpm2UlZPiGWad8Ny04I0Lvb6wABpZJo4pcjq6y+jRCtTYEDMb/VkuUbXxfRtUiVKNM0NBwENTjpmPTETRujQWjGM+fC5FKx6fT3qoN1XdDYMWDnEoKM0KMV/34qghoawRMyZQ0DENu8cN+ziElSxrz8vcEKZdnUU2Zo5Geh9jQbJiwIuMJoTKDTGQigtS6Zw2oL8lZAsF1IKhdcv/wIIh5u6JspaAUvaCzAuVEBi1KlHfCxjmvRD0vauJybDtvZXG/b2yIdYyaCHUtq9OUvlaFyoyVj2kN4C3AHpRiF9SA40+E1X0QH/BugrbdFxy2AbzJWl7t+S5Ny5Xdsvq9OOI6SeEeNO/pwq0k6Ex1x056U2LANL2TktYN1yV9aliKM7SfVjiHFBPhrC82RU9YXECMLrayNGK3qlEMdEO60K1z+8+Bu5JoUWbbl5wVILQiXn+oGLeB3Ztjvb7R6UUkuba8MZKvBX0fBA3+XJPCADA0FDv1EPDxzkiANvr+CiIVwvCc2nzgP79USGkq77/fKfk1rCgcw8yocvKPbl1KxF304p5Um+BVoN2zAZ/uuQOJMAS9fJ5JDlB5bJBO5vLuGEOFeUuoGbW/A3ruFpm7SxHVfO0Rlgq66iGBWGsaMH8BqxL2UpAC4RsMLqMDfVeR01SCSHqBnEZt8Om0XAKDWPKaI1xnQf1zMiMNqn88O1p7gFiTIIpZvyfv/Vj/OByj6ffesDDvw54+A/A9pOI27cF5U3dide2RmRoaBOQngLis3JWykn5UB0Fs++Rmo9M9B4vE3psAN0C4nPA8EQoJ8b6aQA+QTe/krFh/UzQItv4ycwV085JcTM7Glr38NDoCn8j+70LUrdb/zVJggp3raZX9vpO1i1N75tyUlltPMQ8uHOz/g86fwKskLsWyFaA0BHBwav0bLfm78ilrw0RhIW7onDnvBxemwxdsY3GUUUZzCnW1312x1dR5U/1+01/yVU2gHJe1hz3bBfs67UN1C0JvOiXOWCpI9qdqszqGlS2zzZeKk52s+fzuimYSinoesdycLq2z+ljYd52tPk4wmojQKeKygJhVRjuPKHD3sTQDh7QhsH4I2FSVKK2fcx7ZzbyDXrYXrcBjy8T8i3tpNQg2KBKqHEsuJw2PeRNebhn4FixY6NXEUID2/XWg71VkykXAo0NbOMcR02CIbxN0MdOc472/DtaCqCTXL0o0H9gWUi870dCCINm+wyx4jKoYuntMKMIqxLq4Gq7+8DwT6l7yHgoR1VQbspl6lYgtpd6anRMGj0iiVB+ihH8v//4Whcqw92GSiNEQrfSdhmUVNoJSX6Nm26uAEOMcHZUAXhHAGh37ofs8glQ7rWLiTdGsHl4HY0wazLgsKGPUpwAB9jfLabgMV+I9CIIGYDl6+Q7xu0bjOVTgZs5uQRR0Q1bjMEPBi08mghCVdi7TnpQNwjI3Fa106PDeyPIqIZPlOq+kfiNWAAYi/9Ikj3+jKPH/h69oyx3YoRGQrkIyscZyIz0GPTXGaCypxHLKN0MiKqOtchRL9usvEjpKiIzkGJzB+aiLpotQSH+JChnc8z1x8rga8BLuwN9S/Dxm6s6VN4GVXWYMqaQqn4oSFfKQKwAHPRG8QKhCiGFhtN5xbqm1wqhph/C7bcBoIwBedkxT7XD1kK7NcLLbdydLU0pMd1tehDU3bIbAKYh7/kdEEyp4C5t+L7cd3MvyYwlR+BkiaqSsNaAwJps+tnpBf8mFXzePsbpewHDEzC8J/AW9CBkKzJMOu7rIpqU0w94R/k8E6Yl6XC8LiTsB8egDtLFCoP0GLDSSQuPrCO7+laVGxIY9F7v2/RECu2fKsJQu8fH2gYLtiM1GTRvGfh3Z+e5k8U9uLTZKAaFuqOzWuZDnWNZi6vKiuq43FjDGRVxUR4OWfghG2JjajpbKl5s+L3Ugqb6VhvHSNjv33Ky6xN1PffDmwFPZPbP5SGPfUTc+TfKY4CQ8iaci8fKdxArYjyYrjYCsZoBdsv01DrR3K0PiPf3Qg2KMGbC1kbkoWqxaCNPnuquPlk1sbzGw3fSFwB2fxovyGyNH/lcvg9IwIEcrOtRxQXcfVx4QydXb8FMAYfWZdAAupW+2JiDSXDjoR/Em5mflTV2crMq9AQVEZsQLpcF33n7Hr/v/B5rjXi3nXArA3ILWEvU8MKsZHjnfwDo9vcF6qIrZS8qABi3QxGPrQTL2wlW/Ojz+Ps+XMZXj+Pf+fcs1Uj4/jum5plCxiWuSNRwChl3KWGrAUtN/bNUo1EcCxYRMpsKK5YPoyjnzZCNngCXOauthAAo7feYhf7lvOImE7IDASQKqxM67NZzFhrUERAAjEfhUscWFdYEaTdobYcRBYH80NDOFXwN3cWwJuocCPcuKdPeoXVpb5VOputEWLM7bYGQTwSc1NJ7+QTYPq59cVBV2LTD06Zk0A0NSiose+ibsM7i3fhNESVxXlQvApxslkY9RBVdsM2p2iIaBcHlgqKf2fkqzWBZ32zA0A3uLqNCN7hxyvj25YY5J/zkfNfn1fFZ50Q+S3a/DsA2KouaJ/e94H1DU/Ms0gThVTkUJdn8X5S4XC8NMlV0mTIUEYCllM63EZdxw6f3V/yEBOuqBzsVDUbDyTb2U+nseiZgOm29awpscCeA0TNAyp6PQWaaNAzqiryVgM5dgfJgiDRhmcx3oZagYwzjoGA0SSMJ0pBto6A+13YUxt9fMXiYgnSkYb6N+MIMqeYcMa8DXoJCE6eodtz333nC88MJ8m8mhBUY3+t9UEeAJr2/aCElTLe9INeRhCYSO1ejjQ0yNWxnYPtEc42805WijUObGgq02OcNCM/qhEsFGN4xNoqobwrKtwtaShje6/0fb4R1CajkMDTUbqDpe/GjyAnnEmj38rP7yAsmGMJBroDxg7AcxlRk93eErikvtmx0J0lQiBGFEXx9ZwIsusP5Mj5yOvJbMKEXUsozIQQTz/SxcdnHPZ1fZ+u4iUBG7CMgbzaq5btwU1KrjXiJBSFV42Cx2s3b4YUgaKFBRA9ECtKVJJ3Y6R/FmsBO4rV9Vf/MSZ/2UYNoHEWUjuC0woq22EgIsO/BPpe62aKjyBYuhMFCPzuiswV4Fo5EgRR9D1w1MZuaFpulMRop168RICWoVDYfP7t1RdADPGcrZLxIsYaXQBDoHjGHhNIY93HBz05X1DPj1gZ8f3mD788PeKERgRty5F0xQ+hKoNoYL+uAeR06OloKmx29fpZaVdIr5fV34ApRHxPu1Yfvx9I5ORSlF6/E6njtAYulMW5FGcDuA3MKGaeQEUvDSx6RKSBbkeLeNc5RAdBVQNWM5oao46maCgK5Idxut+CNXC0rvurjd71Q+Vt/62/hV37lV1792c/93M/hX/2rfwUAWJYFf+2v/TX8+q//OtZ1xZ/9s38Wf+fv/B1885vf/MqvNYSKTFUNogZz5XN3PqteHYqrdhBJDb0r6enEC3XORzC1gjP8108awrdmyBbA76N2kdZB+gbEGWpyxjArfnmltglZVN5YlNPCWRNw1zcabuaeDFyg45a7qlbn14gwB4zvDH4m5Wi6QyS1AyxNOzrk8joASqwjMTTDbvoGVam4W6/ARh52o7uk0fgwfWzjG5iRZnWSRmpiZLNeItPlA5hzQgwVn376jFwCnp5OkCsjZAIyoQZoYckw50R7vYObaLP5vn9GlV0ql2h7o1kxvJnM8FIVSo3GCzEImgbp0eghCLYScD5l5XNkBhXeU1wrgU67UsZt9O+mtTPlmQSJG7Ilq44RHWolbohBIeLzkDGEinlL6qQ76vOBVJkTjb1fcujdDzVFYtJQuitkYMGYNpQaOrnPOxcAWIP6tzQzvhKzRq/PCV+sD4hT0cu6qrPmD4WQQtWNvBHevL3h8ZsJ4xcBwyMQZlH5Leu1Z7FcmVFzqxwNUPmxcRfuym4glgQUKxoH0KzrDYXgBOJ2rmgjIT4qh6QZGZytWFmGgPFbN2yxYb4kxMegPcj7ALzfLf7pgPRRPdzzYryOsq8JadQJqT1IM1nhbWPZFrRgCqIVOBfN+lJCNyzwkXt2lgyCcpaONITVeW/ooah9DWFHd1o4rFXC7uBscloP5eSqP9uRDPunZUIVGzF5ASYEBOpcBDEuym7LXrtctLr9ex9P4NDQUX9ffc0bj+1oqa9NDymvCQCeEsItAo9R5c53BWkqGC5bv4+LuaDWWwQ2c1ge97Xd+UXm04LYkFvU5PNesFnxQGJ2DA01auyBJA1t9T2dGlCaesR0VOowwkATiAhaCGhNEYDmoxLfO8RvMfv9ohyUH1/v8J+Gj4Ez8Gl6xhsueB/OKv21fWEIqo5JXDEFVf5EbiiNkcJZVYVZURNNKlaTN/ECyYnQhpZ1HqIXKD7qsremBR+Zb5AeCGzuxGx2+aUybpsSeeeYcIsDxlA62ZchPdzQ89QAdDmy4co9g8gf0dROp5QxxgKGJqo7Z8Wfg0lQ8v8giMof+SN/BP/kn/yT/UXi/jJ/9a/+Vfzjf/yP8Y/+0T/Cmzdv8Jf/8l/GX/gLfwH/7J/9s6/8OmwEyWhfghKFWpdM1cZ9YweUY9AJtYJdiVO1Y1P1gJHeXK44NoypIj+O5s1h3b15kTilgSvAixinxe8cK1RWQbpWhLUin+MOLydge1DI3B0sOWuCqORgnBY3ohJTGuiYgwp1nxUvmtxBU2j/bBIER6G7bjYEyYRqTrDHNEwKAqkKbe+IyYEV32xuXHQj9E2hImK1z7zQuCdtxoZxslFFZYh5VpChOq/k0aazJ+g1LtGcRY1U55tGM/m2MJR3kDTHCJUgS4AEBk/G7ygMThpONqWC2ghDrLhuA27XCXKNHTrWrhAqw42M1rR7905kCFULgsPi83stVkYzszhm6eFdgZUQt1lRkiwPxD1SiMTY+rb7ixpfRSuSXB4ZeIem3ea8VSVS18qYt4R5TZYHoy0qrwxZGWWzC94UNr7W085Hyozy0QK8zVihXC80Qjm7v4aOK4S5Ows7kTQMpMZeY0M4Fd1kbxHhKfTO24M3+/1jB1LninnqdxTUSRO1px8GzHcDLm8W1LFgGUbwU1RDwUyoZ/Qiqt/TQntBaw1DTxgOhkIYsAXjlogAlC1l2hE823s9tXt4gjpt8v73nIx/c1ZUow1WxLCqebz4cQdbksOeQ/ueAXiRpggKCl7xU45KQa422rCGpRgiUU7Un781RpkUcfPDjFm6F0/kBkqCHCOqoRCacmjjBNFCrhNup6p7laMLHsnh7y0I0lTAoWFdA1C4CxXqxqhJiamB1ASsBpPI2xizRu7vU6z7d2UOSMdI9YGQixK5xa6Fozgu3Xf+R74LKJeg0vmbmedF2P2LXQHle6AppGomLIUQUtu9XDyfyVE4f1hR/XSd8G/aZ/jeyxucolphvGwj3s8TWmOchoyHacF9WvEwzHiIK+aa8JgnPG4n3HLSAMAcD2MdKGUhc29Gu0FfUARWBL2pgamEPDqkZyoZ5YGToic7XwX7IQEgmtR4iAXs9antN8cEZY/5GIOqlnIJe35RI6wtIlfBmIBxrDjFjEgVRULnx/lzAwC5EuMrPP67FCoxRnzrW9/6qT9/fHzE3/27fxf/4B/8A/ypP/WnAAB/7+/9PfzhP/yH8Ru/8Rv443/8j3/p863rinXd4aKnpycAwCVtwEnDmYjcerztLOQWcMvJ7HxN023IAYD+706qy7apRkdUBGFmzD86Y3inc3zvIn3D6QuNdjTFibFCusGEpYG3BsoNXAXrHSOfGXUwoqB5mzTr9Gg1zwEjs+YHVR+ETfqG554MXnC1UVDHvXiSjhPbZzVYtltcGxwvTAoRAnuFTPtn+lC6B5Nvdva+7IVey/GV9Mxh/zWNPb5cgkAutuOH16ZQMBZ9i4BMWoTIWZ1j5abut2KKmRZt875xdyWNT6HzJuo96wgoq428TGRFheYS3bK6Q/Y4+kF2RU7T8UwLtOdZkMrvqhCWHDHn1MlkDmsqx0S6RPi26uw7cMM0KIEsGTy6BV3EBICDzngbaSdcjWQbrBsiEmxLxLYF1KywvYclUpCeveMqAt3QaR+7CO9dfRBr02GbMbDRiHBXwJ8tWNczykWNDeXUzIUUyFE3TRqaojNzQFmCHmhnhdd87BRWPVhcQq8oJe1jGXanZuldskRBvlNFTroC9b8MuL2oz9CrjjGq1LtNrXNbnMR7HBG2SVDa7j1CAlSTuPbCN+/mbspj2REDV+vp59FLVk/oa4yzevWUk7yKQwArF0WbA8+rwU4Sd66Zc38ZWjD5+GjbCxrNGTMuEHlxtv9smOmVIq4VDTMstn7RLOOJglmmH9EE2g9sJ+Z+QHyl2MCDvpm6BmAOr2wBJGqnfhoz8DGQLyqR9b2mLQFzmZDHgst51XvfCiecCmR4fR9zEFRXD4mO98JdRhaAjpat3mwSwGYZ4ByxIqoE42rJ3sdxXSUzJ2RrDO3vmdHmoA2PFWpH9GjfO1u3oQeA2zLgtgx97TmJFoQ+JvZHIMG1DHjeJrxsgypxAFPWKAJCrO+/NYJU6HqLrRP13bnaC4TWFP2RzOYRpve3FzbSCBUHnsoBxQMLWk2KcoVoE4jWeXI98dl+fIgV56R72I0TKAu2su9JLQfcwojnoeLz8dKN4Y6EW3+U7bBefoeP/y6Fyr/9t/8WP/MzP4NpmvALv/AL+NVf/VV897vfxb/4F/8COWf86T/9p/vP/qE/9Ifw3e9+F//8n//z37ZQ+dVf/dWfGicBwN2wIo37hz7HDYEEc024lQFV9pvF1RzuxtiCzvb79SPdhHwjcpklZUK0aPRmh/CHaArwQffTvU70ph3WBipNoclA/ed8QwqLmlTVS9WbbOPu81IJ2N4K6B4I5r7pIyZ2d9rg6M9B3w/o57WF4+/ViYUdRvSq/LCHdbgx2OHt4yCTQda71v1LeGEl8/qM/sDPcZMm72rq1IAk4FPR920qAzGnWZVBEtq5QU4VPChkDQB1CKhlVDO+mQEzG0svBKqsJMSFEHyefQ3I9/rnDcA2Bdw4qTpGFIZGpt1zwuzo41hQ1ghi7UanIeN+WhHMA8Ev01YCmLinijpq15UUB9Z8DBoy6Chf4IaHSS3va/MUaABF7ajbpqOgyqq6iLEibxF5iQpJdzRKr2ERHfsw7cRHWEdIovyNThofAMFuhEUCyDWgBsHpkxUvbwtqId0kU+udHt9ljDYui9xwHQbkMABNfRL6fcOiUQnV+AYiGG77SCSstik3oJAhhnbD1UvF1gL4c8Llt4D6eUC+t0TxwZ5XYCo3kywTurFXR2uCGLGVIC9sYwACV0EN6CGeQgBOAD7WUSFljdFwMnGd9H2pWaMX+HpvB/s81DQH6bj1st33ErWb5fn1D5CjEmEvkPz6Ob+Fm0n675qpfA57Tt4R4K6aYaDZddlCgCvj9P7QDYAI3UiQbzra0r3L9wO/R3ZEJqWKIRWsKWKtk6IvtoeQ2QJUQxE5KFzRCqtDrRHkcyVcoTwvjwsBQQ/hDw5IEejoBYqcxKEhfrT0vK22hr1wsL1L6DDacf4G8GpPo9RAbvMQIsDhFY8IDbvCz78O2rdJYQGiII4Fd+cVJ2s8mhCWLWHZElrTZk8KYa1qlvf4MiGlff3rZ9TXSTYaAtARjTklbKlqAKLJgIk1b0kLstYJraUIcnVuEO28FH+dYuZ7NkqiSqa6MvTKrnUrqkoKYfeKIkKPJhhixRgUKfHxTeKGK6lzcVkJWBkijDxH3ReCcmNiUq6eI8wAUP9HKFR+/ud/Hn//7/99/NzP/Ry+//3v41d+5VfwJ//kn8S//Jf/Ej/4wQ8wDAPevn376ne++c1v4gc/+MFv+5x/42/8DfzyL/9y//+npyd85zvfwV1ccR6qBkK10JGUrQbMJWHOqaMtXf9tTPk2CloBdMWgb3id3GWdC1c7+EYLHDPoFcC++djvezFAouqifNYxzfBIiLeGmiLqiSGs6EiXGLv80DatLuOFvgc1S2vI9/pnYdbNt5x0w+sW0KaKgfnDHDX+/XH87wYrPrgXcU76FCtU2EYWbYk6XiF7f7GBDmMT5wXom/aKCB3mP27IPh4BC9ocEJ5DH33Vk+imc5iFEwmm+wXPWwAZAa6uls0karyn0nBBvifUkxJry0Pti7bmgFvjTvhzWbUk5QOBgBAbpiljs00zxopksKfPnsXefx//HJJRAYBoJ5upF0JF6lwTY9AL9SA1AGqClsQ2MEOAqpIPXOrX2s4r6Pcc9mKlbeqQqcEfTsCGT9b2790/ezuQNQHQGjDPA8IlQyoZzEy6Rgwt2SWHDeNY1N131UytMFTdbVkt1p0fpAgDdKfh/sY7d4MLtGBspog5NawfKfStlvbSC5B6L6CVkF4IcVHPinYyJ+dqnwliowFAYkM9AdR0vRyNAOuldaSQTkUbmEbYzrFb0MvYkN8SaGWkJ5XDp/d7py3GURNW9KiTdw3lkAE9M2mX2drB11Fb7BJ6WycsABd5FbroIyxqygvzFPIude4IKynnYpB+MDWxCRuJjuauqrDy74FoL2T7fiSElgMyY8/hYdlP1KCHNrPsVvA39azqt6aNL6QxMiUlY1p3312Hu7GlEtBjqsiToQS29h2plEbAgD0CIxNajWh2KEoj0MIY3u2KTaqKxsjQkM4Fd+cF213EMg9GKqbXBFVHHXy5ePEbBRSUx3I3bng7zYik6OjzNuHdcsJtHbAsCbVEHa1noCKgpIY1JS0E7B/nfLCtJ1fiKIIbUVu1/WQnofreqcR9suDCsK/taiM8sj3OEXUfedk9QENFHHRM3apmA0nfVwTMyjkZU8EUC8ZY+qSCITjFjFPMOKcNz6ngMZwwB7E4D+x7v6EyOQdDp7HvZV/x8bteqPy5P/fn+n//0T/6R/HzP//z+Nmf/Vn8w3/4D3E6nf6bnnMcR4zj+FN/PnBBYpX7NRDmkrC1oFKxqn2a5hsIRBpasC41Nd0US+gSPoHCZl6o6IybrfORHXr1K/bB4d9tsu3/uQjiIlhOjHynJEUIUEZCvvO4eQKJmj0duxiY30CT/SCRJF01UgmQQKgT9QXJhYBZ/7y7wkbq3dKrzq3fk2SbuvRiy6V8Tk4mEhTX/FunKZarwxspD8A+c7rqf+aLIkTBx1fOcbEDUjZGNWfQPdJdXWfrvS3QVVnmhXTdjUPB9LBivSVQashvK3gLaBFYP9476nJXEN5ueHN/w9vTgqdlwuPzCSDp1tM9jTjW3qnUyhp9PmRMqSAXJeEBappUDU05p6yoXU4oVYsO75Dcw6AXLfbz92lFgxbQHDUK/mUdOwrSRDeYYShdiixVN3GI3qcAOn9ov//UsIqTkYJvoRcyr6Sf/iv2HbtDKTXqY0cIUOeIMOmGz4Nfq2DJy0A2F98aDRIODcL638Fg/dXHZpFfxTaoQk5AkyntLHuHNpPOgyBXVufhjyokavJy59K4/0/QteP+Rm2EEi/JHZ5pR5XCoagjW9MbATegLqxJ1gzUQmhTRTwXhNPckYdwUHTlOMIrCS8AOxfMr29QFICtUNFiS3lWYVZkxhHQPsbxZc+2LH05kf58fCHzX9GxBGXac77Mj8S9Q6gBoQEDU3fV1fGy8kxgfij+XnWP0N8NrsIJbktgPDYJqE5yIyh51oM9YSOCHJTH4gci+/uTHa0phHo17bYV1LypKkxIfarqQ8b5btUDLrCOiIAdhbFKkEKDNCW8ko32mo2GNIxR367yrHZyeTvwFTk0cwE2bogrbAyx7ByRsSrXre2fN1sonzuynmIGJphjLDBn7qINQJ/7Q9C6HdAVZsGYMlJAN3arh8NcTdksCLCqMKRkW5fdOsCbUj/M0JEn/cC6fmhUB/fppASq7DJqW+OtBmyNQZPybs5pwzluaMJKjgWBIYis8mZPer+mjDUnIwXzPvrywsrUisSiHjJf8fHfXZ789u1b/ME/+Afx7/7dv8Of+TN/Btu24f37969QlR/+8Idfymn533s0Yaw1ooFwLQOWmrCWiK2FV7kF3gUyqyqDghqEtXOD5J1U1bkY5qbZinT32rACcBIZ6YLmvBsWcVFuij/CIhhLQ74Qrt8MKNMZLZpnypmwfMO6BIZJjckIXk3Tnq2T9HEOHLJrylvRdds6upKeDAJ1dIWhhQ6hQz3akR0QBWC/qbH/m0j6H0tjyBzBs818RbpdPZvVfee++IyfbIZ/VW+K7YHUY8XgRs8a4Zl350vf9E1eJ1V/1h0vZx7w5n7Gtmg+CIJg+7iBP9rw5/7g/wffGh/xH26f4rdubzCEiru4oggjsaIapQZchg3BEo6XHJFrUO5J0hM1csMlqZFTbmr8FLkpkcw2lt9//zlKC/jhco93y0m9SgBLEd1RFSIYZFrw0XgDALxbzyjCP5VSOqaC6zJgiKoKaE3zhTTJWe8/IgEG2cNULX/DZ/xiihG36W+jzuTVQ8c6K0ftgN6R9+vN+r02z/QZCMGg+ZYZVWIv3DaTdBIrsubvIcWKOjC2HHQss+7kPg/D9NwcAN1xlQpA5pPh+TnuzaOBijbSrDoOVdt6XX/xyqhFOtzfvUMqac6PjxT7fan3bLxqlpESYRll0xFOm0w1Yxssk5koThX5DbrtvT6PIS+23iQAzUavPUaj7GvCXZg1PVl5bGHWe0X9Qw7rwK5HerHOfELng/lo1z1g+utYgxLnPYICEBwFUTA+m6Mzwq+/ByZtngoT2qjaDc2dMXImN5Sgh2TZAkBhNy50BVDv3tERze5U6yRWYEegGoBNkbnu1nqQDSsa7giA+nkgqmIH7nxrTVJPqJ4E+W0F3akCUYqmj19fpq7kg2jxH1jvr8qmLiqH8VaQjrZJJeQ14iVp0zzFhMGIoQ2E0Ua89cSoqXUvkePIJ4TW+Rv+CNyQbJ9pQtgA5KrFmTcxrR28lEhzfNS75vDdWlMH0jUrW1A0ycahlFo3fXNFYh4ZpSoae1sG5DWirhGtqqOs81KAfZwNUjUVoEDAOem+ms0GQbkrUb+rRloEeuFCAln+ByHTHh8vLy/49//+3+Mv/sW/iD/2x/4YUkr4p//0n+IXf/EXAQD/+l//a/zmb/4mfuEXfuErPzdTw7UOWErCtQxqUOOQvD2czMhEKFWJS0hVzZcSayVOAKLKWqVyZ17XSSDQ2bY0O4DsBpeo3RPywVcio6MTLRLKmVEmwvox8PJdVUikZyUX+riGBJCxgRc1LpLCqmoYVM2CqfaOuUsSYlP5GYA2yW4jLfbyRqzSCso3LJic7wAjerfTdqiu+Z/btXNIUJL0kRQVVZRAdAMtk6B8XMCnovPvVe3MWySQk4U7ogI9eDNZGi51uSgawM9R01ltcXlRVbLaPPeIiaKw9v3djG+Nj/ju8DnuwoKPhys+3+5wLQNesm4oH00z5qIrOlclX5/MWl7dWoux2gveDjNOIaMI4zmP2JoukSlkbDXiQR3PMNeEa/aoaKDF2hd87S09cMsD3vEZD8OMIRRseUSu2l2oQ+aOyGxlT0vmoLNdVwiJKBxbDK5FgCo2qiosYOGabgKm4zsCrZoK7kV2XxokqBe95p4+TUGUKGgE51oJIVYUAegaX7mlQnQs49/HWglyT50L5sU0mXNoOynfiTKDNuoOx06s9W5QjKPVvS0adQ6RBEExVFGuAeNPCMOT3mfVIiok6r2KoveWWg1ILwCEqHO8eq7UrD+ba0I7BSUO29qoJK+QiH748iGIVN96T0YXAJHIyPXUi4ljHpDeMwA7OdZUbDXpqMz3k67sm6k3AxIPqIxAU8cFuk+Jrlvn83S/DdbRBSZRK3Mnja4MrFrIRUu99pGTIkZk5MyGEKs6qIamHC8vlIPea/C5lo2UzdzqAD8BPa0+KQ+tAopimF9JycrQJ/ud1mDJ5Xrgr0van/Owp1CDORQL5F6VaHzJGCaL7LDr4oW/H/ySqdvkdw6jm382gtxi95giAlpsuIpmhHk4H3NDMuLoECvCeQWR4H5c8cmkFdTjesLjOnX1oKcqMwkiVTSDzoswREZsBOTD+/SHUxiOMyrfP44ZPVuIyIf9+0io9CwiL6BiqIgB2EpEXvW7a2vANqp5XUuKpjj660qeIlpI+Ti7WqyCv08RxV9sXr7vla/7tN/R43e9UPnrf/2v48//+T+Pn/3Zn8X3vvc9/M2/+TcRQsAv/dIv4c2bN/hLf+kv4Zd/+Zfx8ccf4+HhAX/lr/wV/MIv/MJvS6T9rz1KC1hKwvv1hOdVD40vs/p1gywm9ajQL6hqpk+KKqGznBeRqr4rHOxWUBdGLQTESKwqwXP4me3fgK9JwvaGsHzM2D6yjJ+3epCvk4fNQTd7G+k0ElANRuYLyG+t6lyCSmizIikyKslRKowkBSuMsFvk26bZkndq2Alotml7kCMAC9CzrqiFfarl800AMh26pabR6hVABhAeNvzhb/8I37m8w//33bfwfp4UomyM23WAbLwTcp2jkATlTo2plGejr6peFEGLxHPVTBIbRy3zoJuGfRZqhPdfXPB/a/8rPjrP+F/e/Bj/1/v/jLVFzFVn4k7+itywFlXrLDni4bS8QjbGUDCFjE/HF3wUb8gS8EW44PP1glsZMIWMN2nRhWkztOEDmZ2YfLkeVuItqzmUIylOpr0MGhv/sg1YHZUpoXuhMEuXB7oVt5CT6bSYpqjulmi6yYt3V76BC3WjwM5Z8iJ0sI3euv14KkhD6ZLp1hjzbdDbq+6Bcpr+a1wPHxsBKCtjE0K62zoPDEXzcnyjokEh9LBx97lw7oWvnZ3zZCnIUwPGpoesEMaLIl5zmlCWhJD3UM826O83aPHVBnQkyd9nHQll04yZZiMvJ5XqCIotS4r6ve6ITphtnHUgJrdRXqOSgCmTgNDhKy04vBBQ5EPdmyUaouTreMBOtHXuiuDVuKgX9vhgvzOeSh0EcjbXXXvwWHWU0g8r7qTXzp/Rt6WWCu4tZZypBs3NibFiHFTW6gd/rWojv/NPvHqzQsnJro6YRi0I3NuoWCYb1oDsIbPsnDmYhF/NEWu1933ka8FQlDcF4S7r+zMX1Fq58y2YpDu+bltAq5oM7Q60ioxJ35udYP06TJEhtXX+RTW+jfMvevI6N6wh4iWPGFjPnJOhE4P5qQBqSrdJwBQKznHDGIpSGkLFnJPegh803v0z29i5Nuo5PwRFaFok1BSUGG+FoIj6MNXCWGPamyJW8qyrB49u7lWo711s46XSdJKxlIg1x0OMwPHshRFy66sqQ4TAteCrPn7XC5X/8l/+C37pl34JP/nJT/DZZ5/hT/yJP4Hf+I3fwGeffQYA+Nt/+2+DmfGLv/iLrwzf/lseBYylRqw19ITLnS/w+ubxB5OaUenPkFV+9IpNDTRN8ITt48R7NxkUugyLZpG4oZumHOu8fVgbyomR76AM/RdCHYPKZaeqG2RnYWvhwZMoe34Nav70HCwPiDrptpwF9UxoJ+iNVEmzQcSiyrEfHmKulTiMs0B750wkCFE3roy0q0kqddJsPwBHleX1BUya3QA70FKqeLeckFtAChX/l89+iD9w+TGyBPzff/w/4ze//zHwkvbu3XgHMlVUU5bolyPAS8DwqPbky6iGRa78aXV/j4B2Z3SLeFnvMN+PYBJc4opiJ59vBr7Q/d8pVENW9PuO3BBJ1Sxbi3gqE7IE5Baw1Yi1RpQW8DbNqGBcy4gi3B0XASCSdlQAkJ1ga4XSGEtf3FsNSlALunHmELBsqW/6ft96oVLrTgBuBreKm0GFtnvkGH/DD1btDBvaSTsdEpvXWzQCWKFg2TQTplU3cQo7eVKANkclom44mBKiuyG3pIhYKgDniNwAOlW9XzbWgxmKwjUBnODdRxV2e3ZzuQxNDO6p5kr2FlL34EWAdMpIp4z8DaC8CeCb+mZAtGmgQj3jh6oW88ICvMmY7jSo8fHprOjfwqAqHeFRJZ35bniRR3Qg9fYa0IoG6RJq8gJM0Emw/dbOBFmBUARiI2OyRGJ2p2dDxFpC93GCvZYTbXvgpr+Psr8Xd271aI98EdRzA3284ZOPXjqZO5eANUesNWnQ6KLXu4Ud/KCKzj8j0a6+CiHb2MKJn60xivmYVFbTPEdaWmbIGnZ/j9gQLgXSgLYFNGqIyWTJok7GXji3sXXulADmIIufKlAkGmk+CvjsJo3K6fBHbeoz1LlpLn+2kQ/gKPGBUOvfbfBRmfSxFQXBdNqQQsVtGVFy1JFp1WaPo6pnthJw25IGgxpZ9rgnNSGsVUfQkghTVGdYDLp3jWF49bNVuKMZubFGH7TXSAasGfLE5RYZ0gwhMuK6BPWwabF1J2yXPsehakaScfpENO1ZRLk5uQbkEnpx0lw1CjtPLdndAxX1/etba8btcU+pr/L4XS9Ufv3Xf/2/+vfTNOHXfu3X8Gu/9mv/h1/rR7d73NKEZUt7AJPdhG5d7PkKLu0Kh9CnrQQUUYO1WkMPUGIWwC9y22HSnktzhOI2scRlS1ieCC0FbA+E7a1g/IIQXnSxb3nQzSQKJDbNoiA9eMSguXrSlRlnQjAJole3TjotxaB0MgVThObmRBuZMLr0ryNFprtnboip9kq6lKCJoiy60DJAdtD6JkxD6+ZBTuJqQX+/FYbEii+eLvi83iPEiuVBO4nSGN9/9wC8H7qqpw2ChqYbV2PAQrl8XlxTwxqjFmCn8irJU4TAUfZ9igCBFmPMDddtwL97/gznuGGpCS/biCbqwhqpWXeCzgVB2GesQyiI1DDXhJcyoLSABusmIHgpIyIrRLvU2EdCkZrKf61gcbmhP4LxXhiCpaRO5stV+Q/5Vcro3iXr54XeyzYf3+F0uycCtOv04txf1P6DYoOcgcKC4PEP1Y2slDwYX1SmWTBguzMVhqsAWPbX8iKgUifHhgW7H0hTPkW5BPB91pTnKChD1PFCA7BaoWWF6nGUJA1K7j4gB7wR0qONtBLAG9CeB+SPGXwuCOcCnAvqFEE1IS47kdyfN6yG/owB69uMP/LNH+CP3H8f/493P4t/96NPsb7T9GvvnKnp9WFBj8ZQZIF6yGU3H/TDs49QzdKgmiycvfAQc29W7xXYc3PRAqgG6e9Trw+0GPE9xsdGgB2geDXy0LUKlKTfTR0sqfyhIrzJeLi/4c20YC0Rt3XAukU9XDcdpeZ7QbW4BAn6327kGDbdg6oZUZaUkGNDGJqJFLRYH1JBDYxiPD1mQeaIImS5aqTFhBVL2NSMcC07o1isC+9k1maF5sFG3kfvij4p2jbcbZhGjZlYl4RakpJ7Y0OaFCUs2Txe9qfSvT7ZHsbqyePWChq5YKqlqA1eH6M0jadYSM0auwrJSMKNAxoLckyYjVLAxldxjooXL472NhBe8qiEe9tLppBRWkCBFidr2VGMLUeVaztx38bYngLfH7w3hsrbMmRezG/JUOEQWneXTWZB4FvJnJMaSi4JZY1dkeVjUI7aUAZD287jhodhxSVp0+i8UX/vH6jAf0ePr3XWz4+vd2jj1JnGzdw6/UYmFgQ0Q0UIJlDoVeiWI/IWe/YK4q4jD86Kd61+9wURgwAVdXByXLkQyllv8mopqW0UrB/rBh5m4PLMqBOwvRGUO+ydWKEdyjUEpAVC2InTuxpp0/l3IZjjpyEo54Iw1iPo0W+cwO1VquWY9GY6p4wfPd9hOzqaRt0AeGV4hg/F1heBPA2glVE3Br9ZNdp8iz3LozwN+N7jhO8bcasaw7uNOmbglUDF/6yB3xZ88+Onbkm/5Aj5hPD4eMb5osx0h5eTWYHP5kDrCimYlPb5NuK2Js2c4NbJaGMqOKesnUnTEcU0FTyMC85xw8A7FLlWXVTbATf3lNT327lbQwMa4eAzW8AQFEhHVvzRhDAERVEc/ds6yqM/4+/XURURL7jtCxU6uHZCC91qqayhmaET9YIvDHXPERoCZGWkJzajLr1/62hqlAWgqjk7MrS9GDKpQpuUuBrM6bUN9hyiB3I5GawvAKLgdNrwyeWm7r9Twvw8AdfYfSrcoBBO4hRFaMiQw3wPHYmYMRtXdIVOWAD6UUQdI+pdBV3MkycJcNsPezbkUw896Kn/bsC/+I/fxb9/8wly1Vh7V0AJi44hN0N0tr3ocQdmlxA77OCcsM7xYoGcjEy7HK7V0FCSQCJDiLv6hxr2osiQBC/S9ENYUWd8Lv0udcQnQXbFz6HAc7+ZeteAU0XLjHef3+Pdj++BzbO2AGIgWBFV3qp/E19tXb7JQGHIF7E3R27VUCRhzoxlHMBBk4ClWFXl9w3L7udBApoaQmpmbAi0wuq/tBDqwnuAaFSZOX0gkfHrRA7qku55ZHtzq+pA7vEAYqNssbV7GjfIoHv+ukVss+53YWhIQ8FWtRFo3EzdaV5UjgBHGz36mVAY5f1ga1H0/hBF7rpYwTZh9+yqQZCtkQxjxThmjKnsTRNgTYzmBDlCWw9jFifY+ufS5sgulJFudb8y9RALYqooA5uUeZd9O1FYfE9cE2qswAAkK6YcRXEeSqtBEbKs+whchMK0n1tCKDVgrbGbYaZQMcaCS9pwjQPC+np//J08vtaFyrxGiKQ9UtvQFFcKeBeOpnyWUrijJiIWJOfGRGyLF62z/pl3gzg3OyOiHpxVJnUv5aqBhOVOuj8BVYAXQnlbUR6A6QcRw6N2hfGqcHY9iRk4ERo00E3MZE7MmMphyDZIJwd6iBkmQZsEMlbEsXaOgc6M9eacveIm9CjxKoR5U67GsiZ1g8ysC9KIiy2ImrNZPLc6pTbQqMiEh4Jx0s2QCIhjQaadcCCiMtf2VvpcWWbFsOVScHq74A989jn+l7sf4RQyfrg+4N8+foYmhHkaUAqbfb1gXQaEsGGIFXLesHLac0kAzXLKyi5fkvoEKHQJlDr0zIpqBQAAvB1ueIgqHZ5rwlwTFpO45xZ60eEbiUVagiFgb2UJYFIotBkSEhUz6qOmXAOmkLtD4xFz6SmuLCBqfU4sYqMqL7qjSTINNRDSDlU21nuGtWBD1Wv+cH9DYIXARQjv1wC5JfBKqOYj5FyHsBCGR0UC64n1eZ1TQPrfze63cmlwMzHv6OvZFV36fm/XEZEbcg1Y5gGyhH7wuyS3DQD8JVwhkwHOii54JITyrexasZJVh0c9yPIcsBUC0o7Q1JOgnIB2tu/MxkISdG3Gf3PC4/2kMnjrohWxUV8VGUU3gsN4Srx7hK5N7+qpagaSfEmL6FEQICuypmqSfEBuuynZkfPiRpLd6t/vEV9SBYiVUFiQzwLcFdSVwXPQBsDQnzoqv+t0v2K5DuDH1HOIwqzXrlw00FPG1jkJ7WR3pjUt9a6hJbUgCAt1hV69ElqKOgJvtHNs7DOowaMlmNsIUuyeLms8IGvoIxaMDWEqvTgnB6kKQxLrWO3KoAyIZYD5+Ls8J5Tng/zF143tD6ekXiCRGj6/nZHXCJkjGov6e9gISAIU4XVpfvPv2vYMOijdih4ivk6EGjBA/7/qmBI2pvPxkgYy2hTGEIzbxp1yELiZ5Nm+BlE14WZoELFgHFWxE6a1pxof879CaBhTxsk4Of7Yqo77NgtP1UmBKYmMW1TmiHpSjuKHbrId4W1WkIkpoxwKs7FarYwFEaUyrtuAU1K/lYdhwX1cMaeEx11I9Dt+fK0LlbLZquilJPYb1OeRfLzY2G82G7n0mWfRn62BQH7Y2u/0WeaR1JRU8SLRxBeD9Pmqpvzq+EaChqjle1v0V9oJiYI9hTjqDBc1gFcj7ZE6k/p4B6IBccC+diQIeKp9nPPKXrm4nl/9NprNbdtBoiyOQJl8LZqbYD3xIdRR3Ucv04bP7q/IjfGyjHoINp2ButfG+NGC05jB3PBym3ZPjqEixIZ6r74L0ynj93/6E/z+u8/xEBc8lQk/Xu7wtIyK/hQ9+EPYOTWlhM56P1/WvjA6K14I1bSY4rNo+7yrEFKsmMzE6GFccBc3fDY849aGzh9xaXuwQkRZ+XsHwIc/739mjHZnxROJoq2wToQItzK8tjCHbUTNR5bc3zeArrh6XYDTTjg1xj3EUL+xajFj7Xgw7tXLddJN8FSwfcJI74KCMyctOFpmSCCw8a0qdA3xxsZz0k3JUQQ5uwMiA2xdXAMQoRbjhSCPAx6rjuna1aXtNhJpr5YRIKaa21S1whlI1wYJhDIBbSB0vMtko67WSS8EagH5Ij0EsCWgPhSNBOCm2VqPWqDBDsB4I4BUihpWfU/53g7tBDSHToi0Y3R/pQaD93QcEjYjWlrhdeQx+Boly29SOSlQzwSqAdSkj22c7NyTb21U29ES47vEbOGQUYtENoVWDQKh2EnFMigCUMyZlKDFSzkBwdRA5b5BLgVxrKiFIdcIpIZwLmqXvwbI0HR/a0GtGDYXDdghHe37J3REzTl1Sqa3fXNh1DmgMtQ3Z1XJbD237g+Vzhve3C3dSmAtAeuaVDLuXiGGIAlpYQmzi4ffg/296P84YvC8jNhSwGBjWRflyRqQzX6eDBWSQccgw1j6GPc6D8hzMjaxjtIxVWgwmH5HxCrfjqmgloAyR+Vo2ZnjNwRVUh+pFFBT3fewysYTiUoeNm5anxI0AqeGMG24H1dc4qaj6cY9KsatEgIr50eAV+MlmDtuCYbMuHCkkgYimmHcuqZO6vezpBrqpGort/R4LVv3vdkz9zRDSFCF8bRNWEzgsNavXql8rQuVtgUwrNhwKMo3wT7Tt//fG2mbLcuOvlTSCjEz2sA98IuMG0FBN84ObcI2hCio1gGVi3amXPV+dqg4PRt5aVT+SbNZe9gUSne7fQmAvKjT6/Boh1XYoVyHhjupj7GjflUlrLXPe61bc8Ml0YOvOzFCFzGnhjAWSGLr6nWOqgWP9AhyN0WbYsHPXB6xtYDfrB9h3fQQpCAAFIXqMsKc+uLzx/1ZlTbvX04oOeBH1zsMXPA4KBH3x/MFy6amQfaVdUUBgD4SaU1fZ4gNZDJjHW8pMfUocfRUWOd/pFDxdppxFzU7am0RX2wXvNtOuOaxM9zTgZkP7AVKv/f8Gh8KFueaACozrEYe0/euHVMVUua9Q6qGfkl7XURKow5hU6a9kwe68ZfmE9m9vJpaS4AWAuYtqR/MLQGFEO8z0psVZZvgfAGwFsItaY6NzgsVQeSZO/eEjNdCFYhfJIXGy6786SMQv9YLQfKgRNGyIyleKPQMFRItdkiLlG6kZoqbuACFBBx251QSaFSRqWV4BXg0B9g7e40loJ0q3jzMwB3wPl7QfjLq+2ItyFwWr54rQLgxZDMkc2q9MWmToN0XhFNBfRx0fEUAbBzi/wDabOhYhTrfoty1PWHYxgRtVPWgr1NyuOFwDWGvrygT7ant9j3FGyOnpAcmQ79P53KwysxbDT0FWKJALhXlZPtisgaAG9LYUKNWAGI+JjK0/n5cPdhJzobcOAFaZOcbsX0nfRThLqn2s05QlkbaT1qhUXPA4/Oph5m2yihLBM0B0UIG3eiOJgGSIJwLgqk421FtBHRyKADkYuaRYQ/Ig8Cu16Fq5tf/C2A/gKMqfTx3RxtB6GZfCQITX5hXV5jUAkNshAQbDanrtloKLJQs9kL5Ha1RN1/TXCIbqUULJbTMsM+mF3w83Lq6cWsBp5gs5kDHRMumRYGiNK3vQbCP6GRoJR4H1FaN56mjtDmHnbQP7J8D6IIISoo+dbdd3kNYx7ijWFsLmGvaR+Trgq/6+FoXKtgYRLwbiXnBYo/O4G77Ruepn3tBg913hAj1FlGD3hghqmkPgS3kyQmOBj3KYQNtuhmUyf7f0BLedkJsJUI9q623vLAx+NWYijfAyi4tXqwYqYNunGoyRdq5WZXeXWsrd0km200faD/Yu2mYdWoi9Co/Atgr+22L2smL2qhzqBp/3gg/fH+PbG6qHk/e3HisEYrBiLc2doQlnjRdtVXupmae5vn4ckLghuc8oRg/BXAU63VhQCahc5SkVgYFtbMOpAvklBQWXUvEWo6omBVcltczl4SBC16KsurfbSc852n3NzkiKDbm6THnQt2lUS/+T9+WjqQUmycfC5Z8cJhsjTty1Ex1JYUtpXYnv/G6e46UjwrkmwWn84bJ5ZqNsfzkBL6pAqyy6PcoAFjA54q7y6Ld133U7swstGXTVGQ3c9OxqUL31FQB5kZrJAAt0o0FxTNz2NfanqwdZoAqd0jdC5qu6uhJ37pxh5UQs+wFeQTCZgolGO/LCvZOOh30eYV1jeSBwDMjrIRyjVjvEu5PCx4eZjwHQd0CyhwQXoKhlVro8awqM79+6yeOjqA3Mnoj2esmNVHroZwZmu/TrJlv2EmhVdeqFgVAbQ0S2fYk2cn1pGMo913RZkQQihonOk+tnqQXVzzruvfcFjE0F96UNOqZT66eiXcZw5ixrQllVTn8MBScJ+WDvVwn9eQLVfe5wqoeS0FdgPlwzXswqezEV9obq9DHUeYvw9TvAaWvKBTTohL5s+f4+OXe1HmWVyt+AONG+bqWVwT0zk+pWojzWDGMBadxQwpNx9026nYfKPeHklgVHYitexf1MWyjHpoYbXyuBUXsaDyZ2KJGNpfmpgaNhW1Nw9AIu48aGZopal5oaGw7cGx6aGTT91iDItk/TPe4lQFFdOSzNVW8qjJIL54XJ0MsGL5EbVQbY6sBuZoBJbsTuaUse5SHGUDiwP08roXeFLNyUVKsnaNXGyNL6Aab2xaVglD+B1D9/P/70eWuwH5o9EmA3hjsi9XJdYVedXjiC39T0qEknavWkRBH/wHpxk+9WAE6w983VE9S1UJFdyve3M1SNBsloat7OAPRlQa2qdcJfWbvn1HGhm2witjHVY4M2UB3l2Oj+8W4YRCz4M15BgEahneQ72nXoP9dLJ2XohLN/HlyjtiuAz6vrKOhSt398Jgn0eIuV6BRC71aFFbckLo7YzO482UZcVsHPczL/p4+9CUA0MnA/vcCYMkRgUXdaAc1WHrJI94vJ6x5d1MNBkeKEOackFiJsEtNnTjr5C//tz/UjKntNtJCXzLG0eLO4djSdnt9j0bfim5+4plBNtYhO6x9Q6C8FynujVPuK6gSxrcL/uA3f4w//PADfLFd8P/80f+El9uE7lmhN34nz6Ew4lmDFeecsE4FZTMp/xp0xEPGayC/t6D8gsO4ptkYyFES9+fxy+ChlGHbEQZfF7QBsqLLPX2U0QhqxGgjk3KmV4F/ngdEovyvfKecrvREPfXaUR/eGLyS8lEY4DXglu+wfprw0Zsrft+n71Ea43Ge8PL5BXQLnTDJmSwLCCh3xuOwJkRHQ3otfRQD0oOj2etzAmTbD2bO6ByzsBDkMUE+aWo+RkFTuz0Xy9ELP8zdJsAOhToAdIaOJaLa8YOUpwagK7jcIbvzQlaVnfNqrtog5Bg0nbdqNhRWRl0DZk7YLgXTacN02vq97yqaUkmRZuzvy9OTVUJMu5+Tf6xiYY4Viij7/ROkm9C5pxNtqkCj7D411L2V1G8JnVwNWLPZrDixPaMWhiwBtDLCosV3q4QaVJ10Shlrjn387UIGsVRwGA9PmsroW7WU8gOKTjZa9/2Io6BRVSdnT2Hfwh4G6EVuc3m2AMPOgYFdz5bZcrpoV/Z54edNdiO0mvBS9DtJg1brTsB3ObKrioZYMcWCU8yYQsZkdgiODD9tJzxuE2obd3UZqXUHs6DZ6LDYZKLfr0cH9w8ebGZ2XnRl49DMW9L7aNV9ttJXLzu+3oWKw8fBGcx2gIkANVjFDjjLuRcRC8O9utphsfGmN0cDgGYzwrRbhJMTrmxtggEUaDfR/HVsEQM6tyfT3ltHTEWVIU4QhG1qCptq9dySoJ2sAzUGuqQKmkw6uinhEUAfpXcWeB952FzSmOPe2R8JnR1twWE8ESt4KBiGgtGLlBIUgh90nu1R7mJEZGpGNBZVR/W5MaujpPqKWKVvPJEbC7ZND25P6/QsHjc686JrTxiVXtT7ZlpqgIgWFmuNEFFJ8fFx9NEBlFD7so2YeSfguUtkD9/y57fnYnv/XqBEbthqeJXQ7X/X3RlJupJpcWnfYo580Yftdi8JureOFylqKKgjnvZZhRRC3iJ+8HKPc9zwtE14ej6jfjEi3nh3PM3UCdJUCNst4QdyrwhaNHVRgxEC0V1klWthowpXBNTQxx31ZITvlbsxlqOWnBm8ohu5iY1njkqWThCXfb0I6+tvLksOgvEddwt4RWjUi0gYKJeG/AAA6sicnhWN8cM7PRt60wjxFpBvJ/z47YDhowXjmLVLtvUYZr3WcSbEGYg3QT3pc8XbrsQLZVcBBRsPOT+snKWbLbYoCDByqY10ORPSE7ClAavxjqioisfT0PM92QhvL7wAe41BkKPsSdfmj0SFe5Pkcl4IEF4IXC2awuItAH3eeAuoo8JAQvv3AwBlY8wC3N0teHNaenceuGGNFXmsOlItB5Tm0BASU29Y2Bx5Pf+sg3WjoJ2qyoAz9UKn+89YUdyT10UL6HauaCcrzLyzZ6BujNqCvR9+pdTyMML8POAnlfE8FjX2jBXhvoLf7M1PNWTYG4Xeg9Qv81VRBIhMIRpTU5fzzN1CQMwl2gvhLrc+iBIcRe08Sd+i3PtKoBLrsq8xFJVsu2Mtm7LHRy/JpMW+x4uhx+7KLUKvUF4dP+v+6MRZETJYkFUVFtUyQoT3RqgBAEGI0PzssLHVjXcDuWN0QBqKTihIkMrvMY6K+5lQkJ2pXQniDnvH88kWtAyCxk0zUBYCg1Cj6Ox40GIB1lnyVd39eNpbRIqihMVjN2kKCN9oe/gfRMOnaGf5AwadDk2hTe8SwmGUw7DkX+ghUUl9B+ww0bYNHVGhsOvYj54jAMyq3Y13CDlHldGyoDXjgOSw/zw3jIPK5poApUS9oa2TEIIeggf0qtvyywfvD3qTDmNGpthjy6dYeiECWJHADUxAEyBT6MVKsFmqOgzvRn1H12FHQbIb/+Gni4YGoFTufBaX3bl87kNZscuQHT1hEgxcMYSCJmoSpyZu3Pknx+cbQ9ktpm0zlMq6kc+sXjWyH9SutCA/FNt+PfO9+thIBNo14sfzWwRuuK4DyjUhXtVd1JUQvBJai91Rs8aALIQSG9Jo5iAg0KmqPb13jQ6Z2/3eNkUdPK9GolqzS2q7Igh7GB01QnfMttFAG6zAsYgEAOCVO2/FAyuJrAgQUmPDAQiDFirpGZi+UDXQTKxrY2hAYYQ1dA+SehKUQoiWMcVVcPocKKeI289c8PKtrSdlyyCAK2DOgnLRdexcsmPqcdgIbPk5YYYekqMaq3nx5cVZvgha1CLBEYVyIYRnBl5GbYqajnvjTdEjErYAvdb3FS4EtkO7F3YA4hN3no0eoHvh5MTk4ZEwfS4Yrg01EcqkaFVtXjjY+xbpIzjKipDebiNyCRhTwWXccD+teHNaumnh5y8XXJ8ndZJ1kqvvA2yRCkRHoYw2hRuhNEUUdHTNQIWavJHuiZhaJyR7B695NoLTw4y704qXecS2Ji0stgBaGOHGu0LLvg8hGBLAaC1hWYJyKqLukymqRcPTbeoocn/Tx4PDxi8tOuqizytVx4jedPBYQVHXjI9JHNFXfyDbE5uiQFK5my165AXF1t16ASDPSRubZvLwBlXqMNCsIIix4jRkjLHglLLuO41RRX1XtqJKH5fjO3GWSMdYQyr9fPDzAo0hZPl4QR3cRQChA9pnaJEQ0IjQKLy6bJ6RxKTNUUoF5zFjiAU0r/iqj691oYIPyD4ts0rfDh1G/5ItEbSGphttZUMwAAmE5nAurKt0XwGLCAeghYNzQwQqU4OZBUXanWAFhyrGzgGfy2ZbvVGAJqYW2D/SsUPqEBtpB9ULAi9Q+MuLFGBHJXr+hB2kRx0+M9DafpjHVJFM268qm6hENDvIQqw6sonmndDJy7Yw/f8JnYisxFddFLDLttVg70vhSyb0IiHY/69AJ9ECWsAcyXIAunT4mEAMoLtv+tjH+SnR4tW9g4hmAOieBY6kNENlvEgRIawt9LRQf0RzM/bX9GvvMubaGFsJfdwVLxVyIpQyIb5nM08TFIPrg4U08qbXsBgfQQbBOG2IoeHKI+o14UefP6AtEeEpKBJoUJN25AQy9VO/n4wQWD3LClAi3EkRQ7cxp43RqnZgvOyhkX4Qt8k21gogwki1ZoYWpXfFXVZv8D1iA61Bx0pBIAMgY+2SanqJiC/6vspFUO4FbYR9NuqyWh/zaKSA2HhFuWD11LC90bUSNijCWoGwCtIjIb8JoLuGOBXIWFFk0DFwUh8iiKEFWQ0NKSs6oRwLM7qznJ1mkTNh1ZERYOOsUQuz9MIY3gPxqr/Dxk2Qw75QT6/XvkSBwIzHNjN4POzpLakZsaIhsiMigm57H29AehHEVRBWsW1Ir53aKqAT8Y+EfCraDBUAZQ0oU0CKFW+mBfdJSfAvWWXnHNSkrhe4fnhBP09ldUEOs4alcgFC1WvVmhbDggYSVoJzEMikIzB3wG5L2LlBhVBywBLV5Kyuui/3lOcgqHZ9WxItQlPDh4ob2YJKq2VAviRsl4htjWjXuI/SU9v3b0NuxP6NQZECT1mmVVGcNuj9EgYz1yTRTcxG8iKyV22+P5pAQ5r0P/c909Uz1TPerIkV+ypBAqnUG8xSGOsQsFnw6sAViStOU96zeYTVuC1HrDn10f+WdY93A9BAB+UiAzE2AAWVA6R8QA72z/Nhcef/K+SUNw1/NbUltd9jZFouADaCIEBYxxHarb7+uR6NHmDEJ0awNGCXNJJtgm3Qqj+cC2pTCF4qdYksAMsEgn4hxo4XaBUJlp2xfTg8ABtNsY5KsGnh0ca9a+okMUHXqusfoJMcv4yZ3hqhbbETaV2m7Ae0Fyml7rwJRyKGVJAsPXhKpUv4ygcFDaCyvQyAI6uNno96fENh7MUL7+M4R2OIFFHJhmy4X0DnohwQliEWJexaNIITXQl4NUN3FOM43vG0bLLPqSnGO6rkv3MsUvq1dATGfm4wtEULF0aThsH4Lb6g99gGsxkX3TTmLenYLJvkGYJxysCngi1OfaMTN8eauYfQFbOAF9Y4hfw24P/0yRd4OY/48XjB7d0J4X1ENPdidUyVrhSTQd0nyYh+DjlLI7Sg32VK2o0BwNN1wnaLgKcNC+wQAPKd9O/X1xdvxrMC+vxdk76NhJupJxenp9gPDOVgCeqpIpyqJkQ3QmZVYJHoiECmqkaMS9CxxUj9YHU4vEUN+iwCM67TfKDlGw3bWxudbcqb4QrE54AyNITLhmksuGbWAxEwjwvdP3TJHQj4fk2jWsT3AsH4LWz8DK4EbIagWn4OVzEfF0J+UPTIXZrrKN3IrnOMBN3zxFUuEmwEEq1AcZNHa2R4ZQyPjPQCDE+COIsSkZvse4g9fGQl5IiWrRmBckVED6JcCddhwP244i6teMkjfnK7YF5TH4X7NXBEzZ/f3bE9tTkYIZYKQLNFiSRtGMvZftfGG2Ik+V12rMVjfj8ivxvBGyNuh++G0UnRjkywWSH4mtQRJpl0X59PijrtEitiAwBIOtLRX9T3IkHfH58KTpcNpyF3i/7rPGJ7GhUZv0a0F3TOC7lJHGF3ljYSu/td5RQUaXWeGqy39kmB7aPdAfnIxwQgWXl9BRE5RWxjQamMu3HD3bDiLq4Yw2szy/fbCU/rhNuWug1+KTrmceqA74eej8eshWmNu/fKq2nFB+dRf++HPV2DGyumkEHx99joB9BFKtW+TNlllFx9Ueoi7EFetOd61FF6No6nqILMPOwWdcNtih5QLHv3ERt6aBmsEg76pYgQmskTu0eJExGadjXathDIiUmOoNhB77/iFT2AviEI9ipWCiBtH3P5xkVJlTqOpgyhak5D2fOQ9iJmvzEDqzFTrqFnZfis0TcnNcOrYKadpe7n2FhB1oHs5C55NebRhWhsOKAXK8dH5IYpZtwPK370ctf5Nl4clMoap95883HURMdciRumqfSZ7BESdQ6Lh2wdibPHEEP/+4/GGwDltSw1Yav7kimN+/s6KnuqEG5bwrqmff69BAUAH4DP3r7gaSy4Pk2QdwPCs96kdRQsnwnSCyu5NQCc9aBbn0a8fKyxBK1pl9UGgSwK5avihJQzFQFJVVG7RYmbLTNkNGRFNMdjiKV/LyG0Xrhz1vu2RaBcKjA1vf/WgHBlG4GoCq1OB76VAEiqoJCsJl38wooQgfpIpZ73g4hZkMYMDg15qL3ARmU9zIKgSuwFiquKFInQ4qgk0ebDCoD80FCmhpo9PFT5IGEB5H1Ezgx50DGQNzi0aXcfbqZoOoxhVSmoRQcauupIbzyVeHsh5jwJV+4Bql5qCymEHvVnVNkk3X8FUIk0b+ax5Hwj27fqaMUJQxGJo8VCX/9AOZNKkAWIC/c/VxEBOrkV5tnSUVvZ1UFUCFgZ8zDiXVJCZmmM1faPmCq2zCAzrutKSoZCn22XEuc3FaUS4rOO+3jVnBmKFcE8m1ojbNdBfUfczPDQuHU3YAJaqGgDKXl60ddh0ZRlBAIqoRnCR2ZZ4WgixQY56WdNQ8FgDdqWlH/jBzUAJbzHfd8bp4yPLzd8enrpxNTPlwu+Nz7g+jyhXfewWRnxSrYrouhHLdz/LBovr3TvK95d0KGNoBxECv3Buw8YgN4UtxKxbgHrdcDTWDFNGY/nCW/MffscN9ynBWMo+Hi8qfu2uXBnO0MYO21ga6FnChU7D7zJPT68efTlf8zb6wiz7c21sVpAfHVA5WteqBDMe4HU18AhZ6/0gVeOiRLRobw6Gmt9bB2JkajoS7iq1bUXODC5LkFnsORkND+QTcLrBmk5B3Mf3RnZgBh58dBBe3VsBwx8Q7GKuhtHsYDghlC+seCnbmIRoAV1y41xl+M6+/r4cztZ9TAuMoTCQ6eOyIuPQFxR5DekxIqS9EafJnVfXcyS/5jM+WE4pD+awKTU+2bvr+XsdX0PRdOYt9TD+Yikv2dHbSYAo3FEAPR8nSbU0ZNE9Ut9UPy1AXSJso9xFCWJeM4jkMd+Tfw5GkknqW3F5sHufGzppSSEfBtwOw2aNrsGxBth/EJThq/faahvaid9IwAya/QDXwP+8w8/AgdBuUW9j8eGemZItvvdeFKayC1I5w2ZE2hLoDVoUnhlYGNkFlyBbvTHNs5x4l6/LL4LOZ+ERQ86goVyEtaPlXfg4wPlFTRgqshnRv5I73sE0ZiKUbuIVgnbqnB+WQPoGhFfVKkiUZAfGuhNNnk+g0UPprBRH8HAEsW3j6WTkOOzoj51MpQnOuIEhJtCCWWI+j5S606pbTK0w1VOcT8QqBKwmY/IEWlxFNHWJCUl6tYGLWCYEG/SuTaAcUqCHcjmi0SFkF6UeJtuWhDVE2G7t/deYbJ1KLIzSLd6dzM7vyY16b/jQj2PqYVj8WXJ6o5E8I68iDVyYVHH10c6ozTGlEqXvI9jUVn8U+pkb0Vo9Hnc8t7RVZkaisDGJLanLQH1GtHMNC9EK7wFelGrKzX1PuepYDxlxFhRSsA6J9QvRjX9K9bEMSAFaDEARdRAMwlo0GiRY2CeZ9o4h6+kPTW+7422nn1M8ryMqEK4H1Y8DAvejjOGjyrm+4TndVQTTItzcWfzyRGYpGF+PtoR279itNFrASp4T0pvO7rVFW4E3SxJeqJ8IxunZUUEqRLaLeJ6VqRkOUU8TCvaSBi5YuCCU8iIVLuKsYpZLoiqFnMLPc9sLbHLoH28fixVvmz/PP6MN32+9xfhTu79Ko+vdaFCmfRwt6Kk66wOSESXDdNhM/ECJMDmwbtPRYdgrdPw8ZuGtEEVPsGRBnSTND+8AdrVK15M+HsiO4yZdhivaBfgi1gSejdBbUdQOv/jOBs2SN/nnjqKYdQCZO8MhFBoN0OK3FCJbISy32jiqID5fHReiiEufBiZHMcegTTDwqXDTJp27M6Gfo0I6JsDgM4450ORcnx+z9zpahxuqCQIU0Mbt/6eWy9UGCLqLOxJo4F0I/JF1pgwAMAHo54OTx6Kj6VGTSsVxhQUqvRgrT5uwr4Q3UK/Nl3UJZs8eFP0I77NIG4oW8TT0wmtKJFOXxh7nsmm8nh1viQ0BFOxAPJ+QBmaEvBMnVNTQ7XfC7PzKdDHcWFoKimeCa0MSDdLyk1W5yY9zOvYFOGLOu9vJ71G1AiycleZOcKwO7VqsdLsMKUroU6Eel8RHzaEU7bvaoe0ASUK0lNSS3QAyRQ84zsBb6q+WW8Bs8lIXYFTT+icEDGpq4gSg+NYkOeEeEtIL4b4FOmjVSUCq6rOrw87D6CQjpsSd3mxREcJ9LUk2rjAPrcEPUT7ntFw4OhQ5+yExcbUOBaT2PlERcdT6UUwfSFI1waqgvnTiDLRK0SEC6FVRVIcySIYP8Z4M51ci73oVGkwetHWBtHv2PJnxOWxxkVyIn8rjHW15GELfi1B1/h6XxS9cQWiKYI4U+cxUKauXqqD9H2P5oDwokZucVYkaHtj/BDoc7AZb5aqkuEcDgqXsWA9RdQtKiE5634OGCInqkpBkm5lUK1QiGFHkgMJOAlarD2FuAm6eiab9XyprIF6RtgHoMXKcMMno+A6Dng3nvG4TLguA7ZVvxwiwZQKkEpvwFRx8yEyof+u4H1PdjM9L0CaWH8qoAgMY+68O0CR3GIW+dLUouDx+YzbMuL9cMIPx/vuVEskGEPBXVpxn1bLO1MELnEFU8MkRcerJirQPY53kUDb/9v5kIkrplAQzTCTIYhcOxq91IgZX/3xtS5UeANoADoPxD+NKyYA7RgdZQH2Q550A/TU1N45QRnVvhFTg0ZjU+gwqURVYfjN1ZreIPvBrNA6hPpN04sJste213eTLC5QyPm+qGfDLSAs6t7YIVr/nSPki+Nz2oFQCAVqrsNJFDntPBC9TE30n1p2syDgdQcRjuRT6xoVxaBXEJ//eWuEAs9Tar1w8edIQU3ZRAhrDR3l4f7edhixc2T8uyYlqXkS8tZ0wwjjhq1ELPY9dIRF7MLhdTFWhHXz/qATGLgicsXWYi901qIbU4m6ecwldVmff+ajuVFtyqXZtqheJUvQMYUoN+X+tODd8xnr4wRazEb8JJiTjjSaJ2AL4eNPn9Ea43obUTbz8ZgDwnMwdJBA3Cz91efw0u97mhkZI2isNl60kc2qB0c5q4U6GMDK8EhTSaKKC+de2QhHqBnB24qUpMgKCXb+lCihU8PmCHll5Hu1aT8mmXvCeecuWEHfokp19UAGzj8UUIvY3ui4SFPClaWrKIKZgW0B8qIoCQUlIas3ivEjrDDb3gqqGzUujEpBx5VT1ctWeOeCDG3fE0TRTElN81xctuo3p6CrVNxPxouZFlUd5Mop33q4AM1cbcO6xwiELODcELYGCbE7WTu9orn3yKEA0T1JXwumzAPp82PeUdddiaVFCp0L2LgJrZrpYCU1eNsChMX2OVGDM6EuQ2U2UjL0eoqpwoTV+sD3Vc6mqnRA17koQVAvTdEhU085gqWBhbvEmVe9n0ol3CohDiYcGCvayKDKCFXvw75f+mva2FqMRC4t6j5V2WzeVd3YbHSrDt+h3689wfyAFGg8AOGWB4yxIHHFXBLe305YtqTFrCMINSCz4Jwypqhk/LkkrGX3eDo+jpJestAjEqMymGs/rEmMoeE8bpiiBp46YXarQVOyl4S6RLSswbG3ZXi178XY8OY8Yzvd8JCWjqgcPaKO/8222BlWtGA3j/OfS+b74UXKsQn8P/L4WhcqkmASPp2V13PrXRavryXBXZ/vizYpVCJRUK3D6q6QALqE03I4AOwZB2Sn/dEVse6jDmbBYH4VrrJ5pZX3M7TZqGlWX4U6Aqf7BaUEbDSgIu4BcR9+z0dilW8CtFvG+0PJUK0ra5wsu9XQZWut7bwV91Zx/5IUd+naHp5lkA9U8qvjnR1hAXakwoscLYwIWw0diZADJPjbIRT+d47gNCFsshc5UyxI3OABXpotoQXDl451LHvn+HeJKxqo81IaNOsnBe2yFoMqj8GD1Q7bYt4tHU3JQYuUNXRCqUQxj4Ghm0WFG6N8XCDnDERNbYUAb+9nbCXgOw+PiFzxg/EB728n9ZwpE7A4CUi//y7TdPt0B9mKSiibIYH1voI2AhuKI6eKdLdBGqOsA8I1qKvtqIc8/yTpgTY2XQP+/FEDK0n0fRxvTfdKUU8S9TFZM6E8cL9Xe3TDVFAeGHxj48TowVLP2h27gmV4tgPQksLhjqJRjHTqfh3UoyzqpP4m3a6ddExFlZCijQgiUE6M8pbBdxmYKuSm26FmdVFvJKgB5MoZv74+UiYd2/GGHqLYyfGGbtQJEFNy1QGvzMv0s8BGxYS8kDr6Rs06yvfSlVsdKbF/OljLWuhGDztk/R7d3j9sxnUxRKWNAgwNcSg98iLnYM+p2V1t0LFSmyO2prwUgl6PukRU22vEhAEQgO8zxjcr2r1yTuhd7L5AQtL9llQRo8VgY+4Fn6t1tJdkkIhxofTatIHRkkrtAeh9L9SvsfpPtW6qFpz/cXB6bWtA44hslhZxqL3Jao21QHOkk/Se7FwX+/9alEg7r4PyTSwaY9tib/w8VNT/zSSYYsY5bn2PW4s3RWROsgXM3J+nrkFf79JQWcCngmlSbo3vXy/LiC+2SzfV7JQAK7TCVPYe3UZS7hmzErCtEbd1wP30WjJcO/KzN2VHLt+HTar/TmmMhRNom/rfH6kDqkD6PSZPdqO0sKivgVxKt0Cuc+jOjOzmQ2W/uNyhW3OGbICU0D0GnP/higm1SoaauEW96M5f6G6HYt0eu6GaVsDHzITXiIpu0mF15YaGUaVUwW9WbGNFW8Oe+UDYRz9sG4XgFbmql/2OUrg82dCIgffCw6WzADq/phcjQW2gg0lw8yFLY7DNTWyBKVGKelHi8OlR1eM8FC8gXI3klwTQKvzorSK2UKqQ8hN8QRyKmNoYKVScUkEJDdlydIIVLMe6TbBvGn4VdthUEZSjTDlSQyNdsEyCS9rw8algLRGP69QLPZeC18I7kpLNgCoTJBHKFrCSIm3pbkNJDd/59hf49PSCWxnAJHhaJ1zS1k2a5nLG+9tpzwIiJ42jO1jKZjJJL8ztVui3QQmaXTM1yKAHWHpmpC8i6k3b8TRTlwbT3V7UcyZk1oNYRGW3OFUjAepndFMvAGijjsolmCMrKSeEcuzFtHfSdC7AWNFY1NmTpN/bvDLqWYsh54SEmdSxmWWXQzvRlYAapdvrawaRIN+jG7txVqmw7xsSlbRabhH5gSEnLZS7G213+cVeoNhYpMt7HWFlCw8l3VhcKotG4CIa6GZP54WUu+GyFRHOQy0nVSV2Yuyl6Vq39yPHtW7/1r8iRPNueWWwNxwaNCucFBagTmp3s8UQBJmDIqZjU07ONUBuAeVNRhiqEpBFD/7ed1mIao0RMhRNLT9vyEbA3hVkomMiV9YcinlqQL0TjPcryimgbQHbc0QK/Co1vk3c0S83vPNxnowVNLQ9+oSgeUdHC3hgDyBcAja3lLAiBAJF4XkP2+sNEzcMVtisS8J2i4aWyy6o8Oa16GhbKnWEZoo6agHQ0QYvCFy8EKwA7GNjFtCpII4F95cFn55vuB8WvOQRj+uE53lSxPWaDlwWu86D+qCQZROJo2bZxs5V1V1PhTGvyXiWe2qyUwC+DD33fx+dcH2spGGp+89XvEZm/lseX+tChTdlfLNp9EtmIDZM5w0laWdbOYJyQNj0VJek96JCaaSbSiDtagfRmXn0NpEUajUiIRkZtjOvgQ4JSiMwGI1a9/9oPvbxf2hfED437RbJArT7ipSULBaMy0Gm2pCkBZWHY/Wq2To9PqoASGfIo3miJN59QpwYNedkhFl0sitsvhuCworJRj9HPxIvPhxF0KTM+lOy5w+rbmCnEDVRYukRRdmf/3Xl3mjnxDB++lGMC5N6nkV87anyJQvkyF73YqlZ4UVNjd3IrtVxLEYkOMdNu4LG2EpUBCXrZtxyAFZWQ7OihXFYCXEJKC8Ttm9tSG9mjFPG3WXB//zwE3x7esK/fvomijDGWPDFfMZ1GTTx+d2k/jlT1cq6adFAzVxGr6oW4mJyWNk7bieOA4YOzAww0E4CPAPjFybvHfQAj7MW+yBVptTBIGczZ+NMEGYteuzQ6w6iZOq5cwWlhnU2ddCi0H+c0R1KJRDaC6OeAspDBZ0LJAo4VZWzV0JDAlXC9iBdARNMxl3OQLBQwRaBljSxuRmC4HEVEs1ATWwNCyv5164Tmn7u9Kwqq/UjQX7QdU8ZPSagX1sbtbSgsuxO1O2W8NIbm56CTAIxjoaPoFSOjm5410YrrKB7gMt166SFGaKNnBwJc0K9kXjdEqE2Qr1EzSuqXpCIIUoWahhhBZ6+107clH399dUS1WAQt6DoXwpooeF02TDEguvsI8mgh+Km4+o1jKiT5nulS0adKtotgrZ99ZLtn20NO+qzanO5Tak3WhJFi7i8/0xbzE3VRvhtaD2gcJw2VaxsEXVJr5yz+7UjAMXua2v+nFws5p91jCZxlRygxdyYsjZmZpSpvBwl4kpqwHi0x/d9Rn/+eR3Q5L6jKJ4SnXPsUQAAui2+vw9patIGAB9NN3zn9A7XOuJ74U3POZtTRTVflV7HWtMojXcX3IMTLpmRaGsJ6xqQR0WYxjF3bqAQdX6Zxgvo8xPvacmBpY+fjjw/jxQ5Wj7szrdf7fG1LlRw2DyoAuExohZCDoI06GJZm97ccDll1IqVTG0sGd3LwOffr9pwQi8SxMiv5J2UQXv6P+gFy/FA9r/bW1z0mw9Vi6zOhanKack5qBHRHJFetPp3UIaDav3LZsNpr+ZJLElU/zilgmRFCqCjnk6AqlqsuIqHj46spmqKYTeJc5LZ0TDteNCfkhoLLSX6JVML58NNC3jXuN/E6myqhYNX8cfxy0993VY0yOH/AQA1INn7HULthFd/nd+umveCKHDDGAqy8V7WGl8pppxIttUTnrcRW4m4rUnn9gYXezhZuBl/4tCFhwWIV8JtSlisI5tlwP9bfgb/cfoEX1zPEAGGWJFrwHIdIJWRfhJNVcGm8kBPr403NRpro90GPlpkhfbbZFfJCgRHE2VUiXC8kdnU24F9EzhPRKo5rw6mmKmEkAnDe0JZk44ORIsHVcjo2vE02xIaaohoAyM9a+BfvKH/bItaCAgrTwTi8lJ9D7yqxbqPMNiKPioAovQsLEDXJhuEJBF2iFkhEAGJTdc36c0db/t6VGKpEoF9LXHR9d+ijo/CBkQrDqlZ010IzZAbAN0SoYOmoiR4t7uXSACrgy+vAG762cQOSUmkrqZJ96KWqKMi4aoGi3tWjBejKreN5ssBAEscUDl1x2t1ONZ7sY7GgWK9huFSEFMB92BLO9D8MCMBDU2NHWc92FuMoLsVn1xuIBJcaUQJgtoA2fqHt1E49wtCvndujPAU0EZGO9V+b+r9qxlOdRv3sEhDUro7r6HilPyX9J6hsWIYM85jxloCVitSaOO9Owr2s1OFIIJuxtfy74cELdjY22DBGgSVBTQ2pJMTV/XpxlRAF8EWE8oSleNlVhZaQDZQNL+ioSAGRTWuW9pHIFW5I2ULmplGsp8RACjt+7I0KBevJGQJnaSagjakAJAtPNY5YGzE4xBaT6GvlVGXCGmsdga2hkXU8VZMTTTEiq14cbGPwhjoXDM+oM++nx7/34nHq9EM1DtLIO33mI9KG/ZOpCXRQ/8loGBAGSLS3YYwVtQpoGwKE7bBZte2ufmDWICxdec9X+CAQrw0VITUUK1AaNtuGUyx7cnEDBCMNGhGUHv30zokLHXf4KgYRJsJy21QdMShWpiaourvEQk4NFDg/fUJJr3bkZNokByAztkolV+NTVyN06tgK0Iit67OOaIiHxqrAVqQBGoIBKyIr6g0x+f2guFoae+oyvH59X3gpzgq/nfHoL/+e6H2wsdHSj5b/TLIkvtnrP3vp6DF1ipRE6JtfJSrQuGtHUIGm2buNCEzckKXBqoXjh4ydbSC1kaJvBLK06Bd1xrwVAnP10ln0ZVwI92cpDKwcEcj2kZog/qQiO3/7vzpyIIXRWSkQj+MOZvrclACJzw7KJmvSFAlDQlAVeW55awFUbkX4D6jPiZQs4JjoU5X8YO6DYL0dsHltGHNUZVrBDQOqJlQbwQORlMRPZDLWTfl9EXUz3NSZZGwhniGmUzuqp+tnXcJLO7UJI7WvQvl4uinwIMdEQFcCjx1u2TtEHs8AekoBsCuTEHrhUE7NbQTUCfe15/o5+YK0EIQ9v1Cv/fWkQy7R62padFShX1c0WBNhRUSJlNWLgr1MZMav1H3P5FMPXNGkiAPAWUIilAsEeGmRR41ID0bv4PVQLAddvuYNM+rXz92VUnQ97zxTqR2w7FKuL2M+F5zmwI9BDcAJbNKpZOOG4qlsKNpYxfORTl3s+X8MO/k7FGQ3VnWFES0Km8vzsb/CUYEHhvkXNHHn1EbtVpZm4ctqomf36RhR1LIeDm5EiQxsB4aGLFinpzzZNfb05UNTfBUducfArr/C5H5teyJ8zFqITEl5dF5g1fMZqErdLYAMsTT3c1paP1aulR5XSP+0/uP8Pl8AZNgMefwo5WEcgUV4BuGgrenBZ+eXrC12Em8X7ycMcsEWbibOh4Pw300z6jNeZfopp2BdluLZBwdwAQF+xXF1gKu29BDCV0eTuvvMURFklW8DSb3s45s0TTLkjRfBlFQ75SHggCgim4w8EME5j4L3WTkUARYQSGrmaA5MmIVtEOHfRQEdJRFiwpR/+gDrFqLn2T7JkdGrBUBTucVkRuew4Q6M+iFuwdCaxYKSLBZrBZFvihcdhd5v4GyKVK8SDkasH0ZKzuaNI+AV1wSfxwdYQF0Nc0BXPry70uoy/KCF+nAT1XlwE9X58fHseA5Fk5HFVER5cnsyM/+vEdimMuXr3lUkyMhbEWRkjGVV8VdrXvx4/Cseh1YRXlXEKbcIVj3PKkOe/u9NFCXhLYctCixwqQN6gtCWVGUQnhlqKZeGaq4YUsqpgAluLaDYZt1Zm62JlFUbhoF8o0NWxuRnvTP529oETM87vb9XhR89ukz3qUL8phQr6G7N/NG5iuiKFItQTtO3pBjwLoCm32GfK+oAW9WZJ0F+SO1z2+3oPwsU9k4XyEs+r65qi/INumBQe7y2ZN3qR/M5PdUs6KMCOVe3UDruaBwgBwOci+CJAra1MB3eTfomtVkjlOFXGhHGgojPAd9fx8Cdc2nbeb3MhtikwCw9JEaZ+ppx04Z64nu3hzZZ1Hpt6jrrY+toOOklqQTTCUAwUjIr+wZGnoGVB+xkHbyKem4dBxzz/K5bQk3ADUnhGtQbtCI7q/Srgm3HHpzRiw9kgFVyap6Lai7/UoQ8JQRH1ZsqXUOFxospR42zpL+u/wSujsvZ6Ca90wnt5JAPBCvEnKLyGvU4sqjGsYGPpdO+iU/H1JTxZHt/f2eMXTBVaSSGuRUwWPVQug6wh1Xe2RLI02anwpiqn0f9vTigetPmUrmFpRIa+OU4/d1RN275wq1nuK85h0tLoa+i8d3HPdKa8ZG48U0yb3ZS7FiSZq/pQW29Nd0HuFWIoikO/EeFZm+L3c+H/YG1s3ictXPeFsTtjWpTxIFlBCA9VjO/M4eX+tCBY2AsBcpyirXzkgJsgbFuSS5V6xWYxQnaVl2SJC9O/bioZB6UJi3irgPgFnky8HXhOiDvcvnnHh9oHIQVP9/1vcfZmB4ZCxvGB+dZ5yidvhP9wEFcY9vt8MxhKax7KkghdcGZk6cZTuEj34jH/JG8MF7+/Cm/LCQcN4IDqjG0RDI38OHbPFm/y3CxhtpCEydsHt0g9X3wx0ROr7vQAJ8gJi0wz+vPtOhmPmw4MqNVYFkn6vmcmQ+OgABAABJREFU4dWYa82xO812RYDPupvJMb1IsYJ1ulvxnY/eYy4Jj/OkkOxbaBRAsZHOat0eQTupjREfuUsxQYQ67i6uPQvqeLBaB+SdN6B/Jk6CNVdQ76DDCmDRmbwkweVhxtPGEFb5K95ukNRw/XxEerYDxH73nDLk4Yb3OKMwtEBn/U44A3wDzj8gLHnCT36W8MnHL5hS6d9XDoIyBNTFipxTA00Vl4cFKVTMa8I2J3CwBFoE7ZyTPX8GeIUSkid7fWHUaeekhM2uAev83C3oVfId0d4KprsN/NBwe5pAT0l5D+0grzZyekzqKDoDaIURPB/JOQTk1vVk+4n9saNZVdc0mYy0O7/CxjyRlCORYenYivIEO4jboIVZczSOXp8/aOjjYll9RET+1jpipTwa+5VBixo3xKSqh2xr+hnU38j2i6Bk/jaxSuItm4yqNlJYCS1xR64a637qUmSN87C1b8WdpIZWA1LaMJwyShTUa9RixdBmCLSwsc/ofjOeqySGNvHMaC3qGMxH8Gs8FBykxatoQXy+W0EkXUnT+WZT1aDBYp8x01HjsEcU2H1RN+48oX6wH4i0ITacxg3344aHcelCi84JNKdXR4XnTdEfydzNEckQRH2D+pFaZW1GbYQzpoLR1tfzPKJm4wkBr7LfPFutNMat6N72vI14WkZs2dRto6quxIwYHXncttBH0dOQcU4Zietu7wB8aYECwBxvtdBZDTFqtkequCTsocFf4fH1LlTo4IhYFSZsSVDvdgi4oxYWz97NiQwW76Q2gebwuDpIdJEQoJ2wwbVcuG8eHRIFtGMh6WzzTlK1v3bSrTtyOim3RYXuh02Qngnri44e7rjh48sNuQQsLGopbsz1mCqGUdNNp1i61A3QGyiF2m8sP3w/tD/uuTm8z12PBctvh4p4QVHtM1UhtA88AY4FgxKq9gKjkM7qd1+X/Z9Ae8AgoO6wxwTjYyEkh2LI30f/bIChS/vPD0a2dS6NGHIC7GjL0YRJvXGiqaGodzRi31/bdJahWSENFAQp1k6KHayz+ub5Gc95wvv5hG1NqLO6IIeV+vx8eNJDec+y0S4WRureU2EVFeGy37ud/wS7Hy3JmwodY0F0E7ZD6uVlAkVBfVNBQ8U3PnvCECp+wPfY0oT4FPr7+P67ByUWr2EnGlaCDE1N9WYCPwLnHxJuNOLzwhguG87Thm99+g5NCJ+/XPD8eELbAtL9inEsGCxBW2RfJJzU4baSkhvjVTkWw5OuDbchOKr3eoHHalVPhRAX9HGBBMYaI+qUkZK64tYxoLEtUrEDamPUp4TlTAipdRJ8H+9ZcalcNlXygHUUR0WfwzkV7sUCks4t6mos0u+pRd9j6NVi0+wakzEbwquBqrrXcSZgA0LDK2JwR4hY+SjdaZa1SNHCTsdpbdT7VUcXeqAtlpLuTVAcC4oQSgg7/8mKESYrkm0cJv3egqrHnkM/cOsIlATUNWBpQw9QlTMUkfDx0Hbgdnm94g2ojdCdhBxu3PlLCNLT6x2N0DGmIjrbFhFC0zDV9vpa7/Ek1FVJ7kejCeGi3jr2XGTREpKkrwVKqjKKUVGUh3HBt0+PAIC5JrzkcedqeJJxCVqkHEwZhzF3o0xVEaLzB5lNLGBIdyDBZqOntgVVB2EvhGmqfS/fasDjdkITwuM84eU2oiwJYAGfS3fJVY8Z6kZxzawW3PAuGtLYvL+mD84LH+kfrm8KFS0yWtNRnVRHofGVH1/rQqUNAhr2zRzAPqoh7jcf2Ba0G+YAOxPcDwArZl5JS0hHRK5YUOO+3aelnq0EP4IUYkS6D0YTfthJNZSn7huJy6yHZ92QH68nPAwr7ocV8zmBSLDMA9pLQivctf/VUAFAiwOXhwEqty09q4F/qkgBdKxzdGA8jlk+HBE5idX/3J/PU4Ndwnt8jS8bMUXLuUih9lnnsUjxawXglaFQ7Qvh9b/76x1e4whLOtLjHQDI4Fcb6QjU7nwwZ+H+flmQ14jmXZsXMQK0OfZwNb4r4HGzw7fiR893vdhai3rGPC8jXp4ntFsEW0JyelEya5lsHDLsxYSYYqTLOgmKEFaXtFIPLxQjv3bn06pjk94ZBj0s8r0pQFggPxl3g7lK+NHnD6oms8OX6s7l2t5NuiGvDHqzIY1Fi7gloaWGnBPiQhgeBefvE4CE7VOGvAU+vbvizTBjnSLWLWJdA8oa0WrATUZdC1fr7k4V6ZTBQ0FJEXXQ0DZqwST8+tlatHVl69iTo5Ub5soaux7FDu6BkcOEPKX+He7rXPazyw46sZ8R0QMWBvG7d5GMFbWH17lXDoHNJNKl010ufiCNukS43O2ISdj2MZ5b2/dgyShoK/dCVpEu6mpaWDIxb7uxJZXd5K4O6E7CGGw2NShfolbqCjYfy7oScBiUZ7HGpGNx48CISdphIZR6z1HPNeNyKKDJuDdWqLUcINJ21+tDlIKCk9y/G9FFbl+yXTv7XGEl0GavG3bptxeOQtB7thK2W7J7m/dwWQ8MBPeYEl13O3ylruCwOo66HwwAVUmxFilxKBjHgikVjGG3qE9UkWiX+jaoh9SWI9br0N+LhxROQ8Z5yP37cHdcH+F31WZTU7clq+JQ076p31funu6PzUwrayNc5xF5TsASVLo86WvXymrfL1aI2ffZSEe6K6eu8tkz3Oy9hf3FjkVMYDf81P8upmaVRijl9xpHZWiWA6JdewG+HAogMaUBDi6TFlVuiIzLMOvUVC657FCvz/7FnDGlqplVazb7P7SuriEn/DRCIZU69O+2yPoavmHpD5bC2FrAiIJTylhzxOozXKt8SwlYDsWA38g+LilWxBTPaDgUTk6ICiyvipYPi6tX/A95rfc/utU6wvLK5I1ee5V050J7f6nfyFqkvAod/CBb4ssMhthwWn8th66PNtVZqIdq5cYYw17glWqSQnGXx2oFmy7YMRXkzQ5R76r9+swB8UqoEtDGhpgKSgmYhXD9/KyHmplOLUtSYuE17uRp7z6vupmuH8G8NZRj0NUZAKhoBy9jU26EubnGBQiLoA76nNVIcWxW7B2FMX8PRxioEoYbcP4ekO/YxgMREoF8EQSov0gVI7w6MilASBXf/ugJIoQfP1+04yqsLsOWblwuAowVeU74jz/8BA/3t72wLQSsSZ1KSRuDsJEqlILgctowpoJ5S5hDQk0NZVWb9bAA6Sr9ddgQ0l6wWOBeL1Ls1o03LW5asvwtFkW0TKVSJ+mqvnS3YbBCbF2SyqV9dEwCxIY4apCeiLk6f3CPa0ovKVdiDhqcZ4qdFqGE4XxolJzo6YegIQpiGUY0VEjSlGfpfBC279qSoU2+yxUWZWA/5xb7dr+1UcCXrMiO6DizlIB8IHp6R9+t6ge9Hq2G/RB3E0w7GCH9r5Q0fLcHVUpq6ptih5xkJenCCLYcKtg4VjWYes7lwYeGzkM3uWiTqOGUsEwmW5qi3CDxwE4by7d+oDNkrODBxtEMjTnJCmVSAwTqfSOV8NqFyT6P+9CwjvBjdB+R0vPFnvPUXa7nmrBUc6J1MURS6XcaCsah4DRkTLHgnLb+Ou7jFI3E5Lk7Ww24rgPmeUBdYv8edtm6dK4WoF5ZzmWpOew0iMyohTC/mMdROIg95NCYNVIeKOu5GaK6Ak+p4H5c8WaYMRj1oDRGseT4bKOuQIIh7qTtJUfM7fcaR2VomrDKZEZtVlkmAQZLnzRzNBnUQAyFNMjMkZZGO7QJ6OxzbJDMPQFVoJ1CmZrC8UFQR+4GT2Bnhe8HnxBAvHf5EEVSaFEjsO6D0rto/X8JyqavTQ3InNy0E9aM1EkCZkblhhjktdkOsGfOVP6p2i2QvOKG+ONDfooXCWS/E0L9AJ3Zf9efZ7KbkkjAB+XO8WeOBdXxz5tYxk8Nr4i/r97boYj60Iel2bXyrsQJxPo50Edh+Tirpj31+liYTYNK6HINWJbU56o0NJ3tFoWq60tESQ1101kyzVpM1MlkxSPvhnx+CLE6aS6RugKmnpuSqYNBz6MopD9T58G0SbBR046yGZF1FfDNu2b1gVG4fz/4qAHpRWW49WzfQVUEr/YDW2F7j3PId/re6FJQlwCBRsF/+/zUr/fjPOGpBGQA+VPt0CBACIJ6TajXiHeZdczwkhCfgh6mSVEHN4WDiBlkaV5IDBW1TGhbUB56A7gIqADp5YPRQER3XXVpPgksqE6M9KpKpnqvF4Q3QrxSH70Vm9EXI0GHqMVIj4UIauzFqeF0VnmuGJSeq9nJW6G/5ohSGEik0t0QbGSg4zI6VeXrrLYPAPvhQPt/w+wLxMYjLtd2f5iWCDwAeFGZerc4iIfnAYyYrPtiDgw52R5ZuDd32RBOHQ8rL8K9oDzLbL4N4JeoxoIOJjH1gqBZJhMA1LsGOhVVr7lvRzWEwsY8IEFtEXXg/r3pRqtuqsNQsM5JU4kXHTF27lFB52yBCA1iOT/2HGTFTtwPXgA7X8gaoJ5O7GMzQFVFgyKIwT+r/xormtICqUQ90u7qDW3CSgv48XqHzWwOthqw5Ng9l0JouL+bO/fjFDOmkPv4e+CCkStGLmC70EUCfrTc4SqmoFmjFinZzjbn0kQd6YVoyc2s0vFaGc24irBRtdMi3MlYxgpKyrXRJGfp0S99z+WGlCpOQ+5FyifjDZe4O802Icx1wFwTbiWhyI74A8AcE8LvNdWPWxtDoFWlFR/uLNghQAIEDZLti7FUTgAdXu+dmRFrtUOzL5atYo0K1bUtdC+JrvwxgiUAlcwdILGdpWWFUdXfac46F+2C1NyIutmbRnBrNdy9OnyTYUFrig7E0HpRAeNtfBknZZew7WjI8eFEXGAfJXkhELjhflghOGPJr2+b46HvBUigBo7SvUlekX0tB+LDsZAjIUcJ9bF4OI63js8HoI+HtEDjTh7eVT6w4i/06+CjJ0A7D/c68OIlhobbop0LXaMeNFNFfLsgxwHx84T4zCgYtNgcBJgqamCF36+EZkZlvPIe1gZFL8qnGePDivI0KlG7EnIM2oEbLF6qdok8m9nafYNEBm9qlpWuQJwF6SYIa0MdGddvMpZP7ZCascPhBJVI3wmev6vISXpRQuf6EZnxm6noBq3QOVTQSQ/cIRXcpwWJGl7GEWsNuKUBGxvyVBh4UtOxyNrplzJAkiC+sAUFWqF2MpLnqLwbeop4DjpLj9x0vLbqG6+jGqFxsaLE3FYBLUhgJmzCeogJE9LVkDDWkMN0JeSPjFtzaQCzKpxc7TFW1PcDaiW0txviULtT59wYZQ1oa8DMI57MCVnvWXRnYhHS9NymsRJhqKgk+4Ed1Y+j2h5SMyuJ88WK4KbL191xm1iKe/ViQzk6EhUFagJTFJFlBEERJxuPhcVoTgwU491lDF1hJQI0k/YOsWhck3GyWmYdlxgp07l+Psrq9glBIFMDDU05Xg2axh0FTdTwjpyUC+z7rdghn3k3YrM91o3SiKGW+gIA2hgGcw73rc2vlZhQokX7DD4bI0Os/DBngTToYWzW+uTrkhUxTw8b8tMA2WI/B0i0uG5EfcZxHIv7w9OBbzlhtQLFE5X7zx1cXN0q4RQyTiHjElacw4azyvWQJeBWB8wp4XE7KfobG9pY9zEoKYoSYu3p0EOsiGHnqoTQeqJ7K9bU+9foyNBQEKMqnLS4OUAzJL1IeTMtuE8L7tKKxBUBDSMXjFwwcUaWgKUlrC32f+aasLWoe/fwe6xQkco2B6ZXNyUa9mrQq+iDL4pbDfeFFsUIVbqR94A2P8z7hmDPX/fn6p1Cob1oCVV15wc0xVeWSkvtzwidqe8dUViAbYvgi3T2dKvKOKeNDRnS5/syJ1cAHWlwC32HbZ1A68Y7/qDD73z48Od3NEIZ4K2bqrlj7PHfyZIzz3HDUvecHH8+QGe2iV4bBjnCQySvqEI+swUAkaAddzPb9Q+SkPU1bN+hPeeoW/4fbPqdn7MZya1fj178ELanUQMiZ9LUaVbn3lyUNxA2QphVHprfNLT7AkEDZR0PhZl7NowTHZt5M6S7DZ8+XPE0lN74vbw////I+7dQ3bbtLBT9Sr20y///vfdxmWvOuea6xBWzdOdsPJGth+BRDooBjS/eXgI+iIIBIYL4IAiKGAQ36oPGBwVfVNBXBR9OwKP74HkIQXN2zGYne28Tk5VkrTVv49J7/y+ttXop56GUUlv7x5xJ1jyI50zSYDDG6P2/tlZbraV+5bugnpW4WtGKnHAG3IsgBEKSsZn3gqz4SVAMG1bsCem2og6M/kMvxm6dLOZugQT8fXFBqoTzJcAfHcqhSDEUHbqHtbCxRZenDqfTgP/08Zew72QSzcU30ilNDvCAvzjER0K6Yc21YfBQkInhskd8JIQLI4+EyzuMepvhHmSnXu4jTkwYDrP4yRCj7ArKMyC9jIgnanA/ZWrtnjaUN4jKKuUmuMSIj0B4cEjPZGEtJAWN0x6/DwXhrQtyFoQkJ480B+wOc7vPafLIi8OrxeNymNXYbHUNZZZijZMTVZ8uvnG3IGi0h/ciB6adjOvzsUedHUAqxSaVMWsLmjLBLeLya8VZ7fR7KolX+DCAT7LbLz3UvZiFx0RQx1xZ0Etxwn9xpAhYxU4RxMISOpjn1W3ZJLQWHFi1KVK9oNfm+QEoQVbPBYhVhs9ibplkI8ak48Kul6IuUkCJ+muaxcmQoiJ1xCiLR3kIspkM0t4MZ2ooj2UJycZT/u2USySLcWmhmCV7VM/gzBLjEF2bv/MilRB75ShuvIlk8wv1ZCnqVpsbf8Tmq6xz9zKL62zj9AFYfAVRbNk4uTp0Q8boFjwNZwwuoZeAI8zaQ9v7BfuwYO4CvGPkLjW02DZeJoveOpFXJkRfhNPiK5JjFKebOEXLQpD5utO/s272rD1u60PwFUPI8FRR2eGY+hb/MfiE3hWMfmlFy124IFLBuXZSbJUOJ58Qh3Xt+U6Pz3WhAmAtGjYa/NbXJG43meSSUIMCm7Ol9oOlL4e2660qi2uyQ5KbrR6j7ACVQW8FCmVq/VUOgq5UrDdts70H1gJp09+tXqzBwxk4Hzv0b2Wc09gQAHVIk9XMnCM3LZy4WYBt4c/VifRxI+cNXirtKydYuh44b7ZrrCA5pQ69lyyPytTcbhsvRBENS9C0GxdY0zS3Kp5SHdwbLSArvgqvKh9r4Wy/W2WgQEixV5lCej627PPKgNNVbMvLqUxNgbQtxqBtsyUHSR9moOo2zkyyJNYAyMq3YILsFBigLOiJW8SRVRAKK3bt+gO1SD/3dpjBkLbZPEcsi5MclIUQjk7VL5ImnEfC9FwzY8aK+Tnj/B4hHj3io6AseZTFPDy/YEk7HL4habSzIyxPKuIXLvjaF17gi7sHdC7j5x++gIdpwHmOuIQDavRNCl3O0luPLz3K2eGDhwjaZexvJ1UDCUGYMqE8TeCnMy6PETSK3NKRxNHXSpj7HjVGMZqzne7Fq9JFrehfRUwAKFS4KH18cfIFiKO0bCDnL0cGR8CfNY+ocuMvANIWyp20bbsHRvdA4OBRI6O7d0DVVpgT8vT/6Z33cRNn/NzLd/DRixvwOeDiWFu2HuHBvG48Lk89aCefreVx2aYjU7PS507It97rY+vaVklLEAdVHQ+UZbGtXQWeJFlUZ/HZAVYkgwxlS+p7A2C+IyxMmJ8Sag+4WdA0P3Ob53wv7QrWNZk3O3KLoKhMOHXCz2oeH0zCrTlk4XSYJB8Qq/1KKKfQuEzwDPS1EU5ZEWmuHnQBELHydZT0KtJuFRvoeWyZO9pWo1BR9wWlr23OzQBcp9ykZZubRig78TIyo7FO0QZLSy5sPB2HnNTvKDuwWv4bOVmYyytqw36VC4dNQXBWi4OsG6vmbaIbJYsqMfTN2vqOGOfc4eh7BFcxc0DUatSQCQB42p8xhNTMMCtLgnHeoMdbm4fgpBV1yl2bCwlA8aKAiqE0fkz0Bb3P6FxGZt/M4azQCa7C07opvOSIuQTMyoMkEmVlHzJu4owvDEd8eXiFt+MDDjzh7DvMNeJcOoz9p22Jf/3j812oGLzX/o9NwQK5wdSZUYKaIDc6pKgglfiVvoIjUBVVoQKQswJFqn9AXo/SxmCK9MZym/cFpKDJ7grNMct8u8G4Y3XilB1QuiXgQdx13X1Q0idhnmNLwMW66W9Fj3eMqBbwRIzCrhUC8mddwAFFERRu9K4i0CdhuMyf7rlSqkMij6BIiHcVpAVH8AW9LxjCaiyU2V8VK2/a4lvRYrsRUx+0r/jG57f2Ts1rSrJddq+ycGcpzhvJca3uE7EGrZijtVXWIE8tKnPyCF1Gd5hxuh/gX0bUSnj77ojy2844Tr2Q2jTTiRjgyQiUouzIezSJKMgKXyVXLg4vXh3A2cHFitubs4SaBQYdHbzJmFW1MT0n5D2wfM9F3DgfOuzfPuHJ7iLSw/sRbMgeA+OQcHp7Ar6xw+4Dwbbntytu9xMA4KPpgF1YcNddAABfurnH/8GES9zBnZ2c2OTQvfTo7gklEtKNoAhnx4h9Bk8e/b3A8uUtxltPjrjsZBfIkN37rk+oDNzuJ+y+khB9wevLiI9/9QncWYihddQib3Hgswd7B+orlhravSOupXSFiNrw8hcZCX5RkvFASDdYM4uScDnCWbg64Sg8nUmjZS4f7fBfuud47/YBlyWiLh40ZkEILh7h5NDdS0tJnGs9lucAxgJkMewzBIyjth4AIFSU5HCuffO2sPFSF1EUsdNYgyDjxl8I+T6ijgVhl5HvCGXQ6+EASoQwr8ovl6U1ttwB+aD3eRUkL0wmlRbOEXsl3+qLVR8wx4LXbsTQJXhi9KGA93O7HyyZN/Z5I6EVVIKVR2OcGyZpgbLNxRoeCOUa2Wdgx9ry4eYTJDYS4utBQ5EQRCeSqZLEy8Z1BTQA5SLEJOHIyLU33x2aoTBTQN47Cb/sJSx21y86t9U2x2XvcGaSlkgRDo2fqEU3SJaVknYDNwhv6+G0KB8w6aJtrZ0Yr7IVJBvHV02cXzdMU4m4TyMqy0YvkIgDrGWSNOehcxmdgxQpn7ah3MypgSrgs1jtu4IhiALIBAZdyFJc+CwKHl0LOpexGxad51flkiBAHlMJWGpAZqc8RCDngCkF1DriY7fHy3GHF+MOH4y3cGAkdqjskNnhvPxmI9MCa4HgWKRnJBp/kQCjTWjwaBCk9RzNDbYmp+x0mQj9QihQ9rQiMC5pJoiNOYNDVTGAvra4czWDaLwurtT8LQA0MyF2RkQD0gGoXj5XOBG+8eJZg6B5o5OX76I3+BuFhB1blGPVu3NDXqzIiK6g86WZE9mxVCGCVUBfYyN7riJlA1ZIkEmKpdt+wuBTMxh6U0Jsn217rCZIrt1E2yKLmcRt10v2hPFd6qaVZa/jiBuYNqsXwDZ00YzbgPX/sGvEQE5BJqtKLdk1jQ68yxhvZlwuHnWKuH17wg984efwzfkpfuLDr4kl9WMPOgdBQM4yNtINo9wUkYN6cfIMve5WL0F2b6eA/iOPPDJePYnNpwQkxU0eZYzVIARXjowvvnWPwoSHfsCT3QVfvXmF8UnC5e2I3mdcSsR/+taX0MeM3/rlj/HT+Su4fKtH9YzhrQtOU4dXDzuUS4DrCr74hXsAwBd3D/jS03t8E8DlfgCdPdzs0L8k9C8FzWFPKKMoKWqocPuE+Znm8zxEfJCfwu8TdrsZliU1xoTChJtubijOsg/4pX7G+69vMZ86NMJiV4HZIbwKyE+K7PqL8BwAoAZxdrV7MD4KwdZf5N5wWXbXeRQeEEd54Yllx10GQTLTrUQQmDQ4nAPu56e4fKmT+2V2QjrEes+WcTWI8xPBH70qmBSdzKI+5L4K0T/LDh2zBxdg2UnhMY4Cg9RRvsfl1CMjgrIUpvGBEB888sEhf1eB22XUzm1USF6QwCqoUSWRIZdR1C7+4hBUJdU9ZCy3AaUn5FEe4ye0YjoFh9wFnCAIaBcyvBOlBnvZhMzEyAitcGmS4qTiBCNlVmmNMiAfKkvr0y3UUEeZ+9CuX5sOHFp7BRXgRezYXZS2HHmGGXA0H44inEKnai/zk3EL0C1AuDiU3iEdPPJdwQXA2CV0vpgvHyqgjsq8mdsVCGkyb1L+C8tmkbRIqYYMyzxrKEmtJHsFRhM+EEmLbWur32mafVRZMwDM1UsBoEvzqXQ4ph6XHK+4efZ35wrGkLALS/t5rk7mdaqNmHsTZxQtiEyFZHEp5le1VI/KAZ0veNo94r3hNd4KR0wcGhpyLD1OucepdG1dIABnJlzmTjLqksPp3OPlsMO3hruGOhlink8r+fY7PT7XhQoRVtRCiVJEEM0/qvZgdfRVABCov63LLBW4PzuUnfxfpIKbna+S25x6MtS+goymzpDRHhhxTMgugJUAuPVJWRt9ENtwI/6S9X31Ht1zk1xODz26wyKkQi2AWLNMyK0cFCtWMjsErBNrcBUIGYXXlGJDUQCo9K2ic2s13YzWVFq26IzS2jHaT2WghR3a7wtTgwq3KMqbdvtvtpkAbMyC1haP/Vx2LbwaWCnywazR9JYzYa0nLVDmKaKo4sTcRltgl3zqtiMkhZiLucZmQnjwiCfC/Fxg7fDeCe42oS4eP//hWzguvxPnFHF/HJHmAGhrwE+kmSQyJv3RoY4EuivY7Wd86e4e59ThV375LZC2TFwC+onQPUjuTbqRUEGOLAg7yxhjXWy/+SvPMTyZ8OVnr/HF3T0qO9zECcEVPKZBuESDTAbfd/dN/OH/y/+KX5jexv/0ra/j2XjGN+/v5LuycBAuKaBWh5fzDs+HE+oTwoe+4uhG8OSx3EkrY7kFpi9mxCcThiGhFAfnHXa/5YyH4wh83CO8CKgnj8ehk112Bn71Cz2ePj3irp9wKRG/cP8W3t494n949iv4YH+L/+XDL2Kao8hhg7QVj2HfclyYoN4DkPRzNWpjx3Cs6iQjxCcp/MsAIR9robJ0WO99xurmmql5l3AQHsN7tw/4peLEc2IWzwnhtAhZ1Uzm/ASUREAnLYk6yGaEsgMm3+TmfiItjiQUdbwTxUeu4r78OhS8TgeURHDK5aAqLa3yfg8OQsXiTsnt09rGLi2kcIPaZSXSTtIqdplBlbVtJTw8n6BtIIfsIlKlVtA7KrLBUd6CI8aZqVnUbzdj1AoVmTcZBFRuHjKsc1wNrLwStWZQpIIDbebCdW6g5IDZoewK3E7aLJWkPW8ZQtBijZIiH4o8siKXNpeHiUDsUeYBHx0jqKtX64VRBIgYGIrMxU5KhSYjt7naChotQrKiu10ocK4iQjZTObsmXydAHGPVuM2KlDEkdK6g26QOG+fD5slJWyxbQcKbc6d3FaF65CotGytqep9bEWRzvNlWzCU0lZ2hL33IGHzCXZzw5eEVvtZ/iC/FVzjVHq/LDo91VL5Jj7kGPOQRL5cdHvzQPi8RY3FB23Vq+a9jqK0j5TebM+1W9cOKXJAiKw4ymVmVzlbSyw1RGXB14zFBkktSdlUJVATjspD+7RZCHdEG6jZEqla3stYN2dKbAMaa9VojtT6E/L702rLQm6sGiLmXFxkZzRtXXbfu4K5OhQ4EDw1EhPqDbAY3GRyItfgwSVzctIBGn5CrBzKuLJOrFiTM1NpHJl8uLByWUGqr1It1vrQAeVMOvf1cZsm/bc2YVXQqrkmKpTjT161CcDV1EgMNRXGqhHIKt4oXxDVcKgZ8DmAZD1ikcDADJfGekN0xM7A/TJimiPnliF/51n5j4sVtEWTPWN4q8HcLyjmg+3aES4TUCd/hl9Iz5OzRfRjgJxJDLKwmbZQBnwjzEyA9FUJl/2FAolVqGT8OmM97/GLy+GB3wL5f8EF3g/tpwKv7PZyv2I8zvCv41ekpBpfwmAfcH0d8/OJGxkkvce7i0CsW/9+8v0O5kRZcFzJunp7RhwL6KuPFywP6MeG33D3irptwyREfnfY4F+l/3+wnlN0sfjIf7zB+M2D3vpA5H37LgFe/VSbw4G7w8LjDr6Zn+J/9V+CjqGv6PuHJOOG9wz3u4gU/M7yHV487ZDXNy4WA4lCrLIYEQUbyoSLdAuEoPJw+y3k0f5SGUDmAbexPXlEvlYN3cs3cIaELGV89vMKracRHp07SiwddrCIjG59G3XHNkM/vUkupLQ8dwtGtxmc6DfgLgT7o8FG9Q3+YQSQp58wEP2YUdWd1FpbngO61axud2gmyZjJdJjQXXJfRvpMkYzNcZkUDdEM2SYHmZ0jYZaeTFDlkDlgAkSZ3WYpGdUMNvqLrxMW0dNQcUbkK5KyAbTPVpCKmlyZyqJHXWJNmzwDZadrj2kZO7iHWqOrVQVeIumxcwEqSEwRxumZWh9UOsGRqQ0hcEul9fCAJcwwyPuTcqZgiCJ+mEYBjlQiB8CnTrc5XXKUNmt1qdlkUUSnZtwBbuGv0m5lEXr554eAKzrnDJUu6srmLA6KgHMOauWPzox2OGEsNOKUOD9OA46UHsyI4ars/hCyxLCCcU8Rlicjqc+K0IP1CyHirP+HL/St8d/8hvrv7EO/6GRMTPiojPiq3ONUeKXgsHHBfRvTurhVZVrDNMbR5fdvecnZ+fo1OwK93fK4LFVKJ69biHESrBtwIbvJgWDBYk9Zp71TkwQAX2YWVQKBmNLX1DeCW2FqjoB8cRbJsBQl5hT4JzUCHC5RfwiJJ0V0JMWlmRUXpJUzRTSSPrYTpJIsA607JbiK7Ac1NUmS7q2masHPd+n89rOXziZ9tbgAA6F3G0/4MRwMe09BaQ8FV9L40xMR6sTCHVyawDv43fUkAQVe2Kh33xkBuQJd+h0Ft1kvtkHg10fMqIzZ0hfyaGB00+GVREnJWq+lszHumFTpmOacGYVtvmgOjvjfh/JZHd1gw9JK7lBWtMfIoEatTrFvl6tBdurqZlgGrRXvpUCoQjh7xgVpCazowmMwaHwgnGUDpCUCHDJBvu3JTiHX3BLzeYepGPL6dcHh2VkkhgeEwLRGnS49///Bb8f+i78Z86uBfRoRFYyZ2FWcfZTHoCkCC4l2m2JQA+37BF/cP+Nr+BX4qfhWPc4eXpx0+uL9phR+IcTz3iLHgu569wrP+jJ/t3sHr/AQ1ys4/jwy87jB9szdeIroLYfhIZNHnr2Z0zyYk5Q8sNeDpcMGSPc5TjxgzTpVQS5Ta3mT9TgnMytvws7SlRKWnF6O1JQSNEX8NBhXJC6pRW0Anh8IRr3mPn6Yv4fXDDnTya4aNOrFyryF6jEaYBaEpSgAANwmZbKGWcUGTRzwShheENEcsTz04MCZNymV9PSriq1M78SNBAcLZIRyptRT9LGMg7RWtGBhY5PfhrEVvBkoksPPIvfj6wAHdvUjQ/QLkKu3mcCSgOuQSkXuPHAP8UFD61LJlupCbYi4Vjwkdsu0RHakh2LovkwlD50K737ZBrn41hWsIdpJEaPYM6kXe7bT4E7m0zOlrxIluEj2BvL2OFkn2f0V7zLUVVYjG8iEEeeMoG0CeXWszNn6KW1tNVDdtJ5IvX4uHhi63dnK7Dy2M1DMqV2yd2Ejb5dt5dy4BlxSxZI8uSFveCpY+5E+06Nd5VObU3st1itFjWcS3ZZkjLtSJuVyUtt6S1aeqEthXRP0MT7ozvjZ+hO8bfhlfCg945gpuXMCZC17XgsIOj2XAfdnhsQx4yAMe84CphPb+vc9A/8nPaEGFSxHk57Men+tCpfFP7MawRWjTemmPs8NxIxsaXGmhV6vUWQsCJoTLCvu5JF4T7KDQvAwQvnovBnmsnwPcUkatOGKGcFh00nSdhu8hwi0CGfPZAZdOJItKkINbX5OxtkaKcjwC1sRkeUEh4Fm166mic6UxxbeHEbGMQDX6hNkHLDWvSAcTep/hnVNbZnfVN22ZO/oZtqhLq6Q3PiUOa0vJ/mwLnKTyuCZN1ksp+TuaLMprv9a7ittOWh5H6rDkgKKn44pxX5TDtEjUPM2yyIGA8EgoI8ChYtgtcqNfOil6Hjq4s0P3IATIdCPQfjwB9SxFSRkY4dEBx371dvAAzYSghVA4y2RpMtMysrYvsDbOCWJMmNzKp9DnsNAU5LUHMXkqxcliuZcd0rIELMcOdBGujTPU0cmOvH8RZLEagOWpR9lX+LNDPnukfUEYxG03OpEiTjngPPWYLxF4iM1kClE8g/IS8Mv0FOdDh/duH/Dl33GPXJ0gEy9vwfcRLgVQBfLImJ9W5D0hHIH+w4Alj3jBMmZu+wmOGDf9gkUzrHwoqC7ohbRFSot9r27SmfS8aKGiRYLZ64MhrT0W1VS+KQh3C+qvjoiPDv5MSJnwsZpphbMajWkC9XLLSE8KaJ+lVaBBboCYNFoabtcnZC+kU0cs8tTFwU8O8YHRvwLyR15aVL0WJrpo+0l8bvLbC/Z3kyw2rwZQ8XAPWsxmgDLDdSQoTZV2TjiLYzFl2UTNT4zbBiw38j77B2B4pW1xKNpS0LKjyigIUqmEuapLdhajMq/3qpniAUBR/x/LimkKSCskbL7VVjqxtoE8Vj8XSFHgZimwKElLqvq6mmZGJb9Wmfu2LSRiqGqKWuo2a6HiVEyRRyAPLGjUBFACvD6ujoLc8LKmmNva0NYXltcnJ0n2DPl+5BjMfk1Wr5v5ZbP+bNv15utkc2CpDhOv6falOixZxQvVYRfROCeZV6XlqvABBp8xKCnWE+PoOpwuPfLiwckhdx5LjAixqEmdzYtyH3liHMKC7+o+xu/sX+Ntv5fryxUTX1DZ4VQ7fJxv8HE64OWywzH1Qqq1MeFkfRlCuhJpOKo4ph6PaVDR6qcXXL/e8bkuVGxQrIUK1oEV1h0ugCapM2jfLKdJnWqtvysJevpyHlhuJGKdEnQ3Q03STCzVOydx8iN1qG3QJCC9UOUXtBYUoYVauSgky5pdI5M5c6EEYBbV5ohrB0FaHyajjUqOtUIjw10VJNu+pxUIDnxVpYuKxuGUeyRt+ZhcDQByVUJUXTN0fiMYz1OFA6Fqi8Y+C4C1Zwm0fqlxTqy4yeao+CmHyRbbJdb2E0MyLrK2ekpxyMmvYYJqQOXPrsnUw4mQ7hjpTgiJ9RzlJj8H2aWFivAg3ihiWa4eJosQObtFyK6XAc0NVLgP2ipIhHhP6B5EMioJt9T66eWmgHYZw25BCAXLEkDKk6hDlRC4TM0+vu4q6G7BbrdogKIUgDl7LOcB7j4inldnTWtxlFHh9yJW++EEhMkh7Z1m/ABJZZ95CnjpGFMOmDVbhLMD9mLZTBcPOslngWec64APKwG3wLPhpLtR8WvAkwXlydLafAQg9gnTL99g/MChPjqkXYeP3R7nIWLXJczakipqogY1dGQt5NjrPR4qyh0wJ5Xt2sbBNhxZ7k8LnwOUlDs51AOh3hSwkyIyPjjQK0GCSi+tq/6V/E2ZUEYH/7QgbxJra3ZYFg+/Ibk3t1ViCWM8OcRHoH9g9Pcq3x8clhuHy1uEdCst4NrJ9aJzwGnew9raeZR7xtx8wyTjMExATeu/3aIIZRQ1oQX5kc5dEicii7tfGHiUVrO3NpDdS5CU4ho9SiwIXUHX5RXFJAlHJSeO37VQy9Nh0g1fV0GWIZVdSyVeJb9yjVxfQASU+4hw9DLXwqF6D+cZpJkyGUAlIRQzEQjS5q20zvVOW3I1CrfJpY3XjK4PooLS85wBmmXjQea1pXOw5SVx4NbWcguB2Qm3JshmlauiZxWrE68dBIBlXWC/Ii7ZueZFZXNi2qgexcuEgBSaoKH3dMVXsWJlDAnBVeyVUIsBq5Iye5RFFFMF6/1Iqj7qQsGuS7jtp0boPVXGxzjhGzniV/Iz/NLy3fj28gQfzjd4Ne+wKIfxzSRlGTeEKUcEJ0Rhkzx7EvnyPkSc82qp/50en+9CZfHg4EDBBgq1G6AVDYlUiqyDsIi/RYs81z8C/0Eek2iNCh8ZhbiZCrlM6wRpRY0RrmzRtJaTtWiMJ4P1sRTE8rilV2bXPmOzo7Z/a2FjrSS7eY1VLq6qHt6J819H62JvErrtgt65ooVLbZJhk48ZepHZoXMZB1cwldgGfmVCICdkrI0h0K95jRQhMSTHDiuWABncJjWOG94LALAT8rKhNcEX4TqouyMZeqMmdkvRdFIltOXsUbPcqEaUtZwlVtKrTEQOZazgQxaTKC1S/FEge1ICmO2yqIrEFSQFSgJW3x3N9DFtFJNyCC6yOJROZMZ5p9JRm2SDkAYv5x5l8aBQ4YeMQl5SUfsCnj0qeaAC9Rxwmr22HuU1SvJwryLGDwS+Lr3C3gyUIkhg2Vcsiu509+pqOykixEBZBKUAgMu5wzxFOC8yUSSC2xf4UJDQATkAXUUYMkIsiKHgce7w4rQT47AUUAshdBnjkLDrFzhivHjY4/I4NL8WDgAyYTl3SHPAsl9kfGcpMo08CeiCY7C87mrDYUFSIqsza/7tJkbbCaS79Pq6w/4bHvnViPl5RX0rgV9FdPcO4STtk/m5JJvXKKZx4QJJOL+L8tqzOETDASk5FM0BknEvE3jXFXg/izdMjnC605aARfmTd0Kg5iCcEpelFWXeIMvTijpWpEAonYPvgXoydAIthiEfJBrALUDt5XVrlLkrTED/Gk3FQkUciP0ilgilEqIHQPL+JclnkYXaY+kLys6prFZQTUn2BZirkEfJ7mwAYLhYEPssi6Vf5zRn6kwAFiVifBZ2gowhEXJk0L5iHKQFlYvDZe6QlqBKTX2nCimEvLNubuPzSPTChuxLaBlIAJpsvVbfAm1dRuMLsuOm9jRFESdq8QF1wLqBrLIJttw4vf1Re3GVLrlKplEQxPMICGG5k6wg83hx2l5LarZnc3cKHnPxmt+z5kwtnUcfMu7ihBCWxjtMVdKjixNyJGeHUhnogOBFat7HjH1cxGWWCqYa8bJ2OHPBT09fxf98/C78l+NznFOHc4pI2Tf7B/PjCk74TNg4irvqUX26mvM7l+ECw6u54Gc5PteFCgAZTA3F0B9ULRqq8A5aZk+nOyzaOBk6GcDhqGTavTkbQgO2JLeiTB7u4hHvqWWNtGvQKujNbqFp3bAiKWagpAmeIUpfuxQSd0SVK9t3ANY+rMlbyaFNFgBa62PJXgbNxu3VFDgMtELAgbG0jy0VeXF0pct3xGrnLI/0JFb4cBIbvh182yLF0JB2NlgCBiOVRvS11286fwCZ5BXfJNoGV5V87EQNkoIWJKV5q5jZkJFusyaUtsmsRclDes96j9SOUUcJaQMTEmJb9Kq1hZIgJt1rYHjJmJ/QGgOvmTySdCs7XmKB4AV1omYW6GcjMLIE6z2V7Jl0kEXOTwT/sUc5DTjuOvizg8+EfFcQbpc2xqru4mGtpJM4uqa7irorwAj4UJGeJpxDEH5FJg0qlH/nGwI/W7D0DqWP8G8rgqeTsqkcwCRxEdkhJ4dgfWcC6iUg3BY8eX7Eed8hhIJdnxB8Wb0ljMMC2TTkKeLh2OE4DPjiW/eS5fJyFCuAQV866a67EqYprogZ6z2+Lfhto0C6YYlKeoYgVW52cBffDLoQAddl9L2QXi/ESB/vNGaAULyERpZOFibfkyRnB2CpAtO6zOheE5a7AASGP698tQppFyLa/UnqIbPg3cMjwjsFPzN+CWeMABxckh1/GaihDE5bkKIckwI6H6S9h6GAI6EMVTxMet/GsqhdGFkLnfigBZ3GC8BahYo2i9maPsYQeoIUY1rohAuh9IIqcSCUmQTZGorMRZ7hPWmirrRh4avMY9YGApC1bTSMC7qQMcYMBlqib60iZU3HKIihGt+JH4oDq0dTp6Gh2bgVAl6BlEPCWa5z7lbUTJBEcahFh4ZubAsSlwjhQsBl46HF0LYcN0QUjJZcvnUIzlX5aQTlvzjxtkkybomBXADoJpAdCyHYDibkviD1HlHDLk3izMo/TMnj7GILhV2UK+f9ikBfcsSLeYfKDo+pxzlFPF4G5KQyqDc3zjq/hg2C/fFywH+sX8P/dnkP0RV8a3qCj6YDzqnDpKGKdnhtMRkSNOWVQGvFyyWrnxKvppoAUKcJn/X4zIXKv//3/x5/5+/8HfzUT/0Uvv3tb+Nf/st/iT/2x/5Y+z0z46//9b+Of/yP/zFev36N3/t7fy/+4T/8h/j617/eHvPy5Uv8hb/wF/Cv//W/hnMOf/JP/kn8/b//93E4HD7bhyFWaHHTD2QS5rm6QzaJnNqWAzIA2QHosC4mF4H6hJ/AKDcViCI7HsYFRxrBs1stzM1TZbu4GmpjxQnwyYnVWj+QXUmMGUQeJVSw86hB+5gVK1SqYVO0Hd/6uuIBIjf8UjyCW/Xx7W0VIjQeCqq0hVoLqKzfwSmMKr9b+4x5U8i86YL4plpn29oxjxS/KaC2UKE9Z4xpff2NfM2TqI0khVNlblseDoBcXLOTLpYUujghLRuaVlepaI3KCYhFvSlIvC+Ul4TkZFekfh3pAMSz/n0EwgLkvUxg5gLLgy7Sg4y9enQii9TdmSX6zrci8003FfU2i3Pn+z36e0I9kYQYKg/BJY8F4jFClcCF18mmZ9RC6C5AfHRINw7z2wR3J9yGcnAS6nYf4eFAqlbjwLi7O+Otwwkv3t5hyQHTFFFed9LK0sWXJw/qCsb9jHnq4HyVwsMxaPbIiweNjNv91DhFjxepOA7DjCf7Cx59L4GO1aGGCk5SPM454Pn+DLwLnG97zI8R7uTFyp8AHooUmV6Uby4w2BVZdLq1lWBtEVqEV0GOm/kiF15lsJXAqCjHiPMU4IeMm/2E49eBfIpwjx79x77NDWW3Id27dTEnbZeN7zukO7lPbNEDSfxALWKfb948SV1on3YXfM+7H+GXu6d4/c4If+8RH10zLAtH0vEpyFsegXQLVE2wJpPwFplnOLCgSrYfKjLpsEp041lyoEonkuSqNgiW+8SKHpvvjCCBgAe3oDpSQil7wHspVmp0WpwziiaEW6Ku8+LFzV6K1JY67oEhZhz6GWNIuOQolu7FN1I8gih9uIP4y1QAnlGSw+v7PV5lVfNt50L77uqAa743zECdvLgeE4TrZa1zQ9q2RYUiV5ZCTRVXnllWEDcBBaFJqqlCzP6ANbpBQzfb//W8y4cTVLcdFWD2WAohx2uS6VY6nVJQM0rXLPmJGH0U19hUPO55xJRDM6LMSfgpbd1RvpAVkdt1IlePx9Tjo+kgjrM5SJyCFpTbcFhz994m3pt4QZLo1+y5vHm+iB0K6L9F6+d0OuH7vu/78Gf/7J/Fn/gTf+ITv//bf/tv48d+7MfwT//pP8XXvvY1/LW/9tfwh/7QH8LP/uzPYhhkIvtTf+pP4dvf/jb+zb/5N0gp4c/8mT+DH/7hH8a/+Bf/4jN/gQYdypZcV3AxxmJwW6TMgwQE8FhkF8cykfmzayoBNzvUUcLnQAI9Hx9G8Dkg6iReorpPhrrCftajNPSEN/9+s6CxHSKkqqUAZO9RdUcIdUi0QMQ3C5StL8n2d6USUnXw9dfmdVRFOUwuTFqkWGFihcRJZadbO/tF2d2OuEnnAIg0V4mDb9r4v1nArCTa2pwK3+S5eFdhlqOmUmKI/b+97pJDM4QrVeTL5q/SELayLlTwQp7MN2ieLFD4Gp6kvRdLS2ultDpTLk8rXHbib9LLjjMdVAXisPKHtHDuxoR536E8qgGcFsHEQNoTlifSfqHAuggDIFlYcNRzMIvvhVm+Q3vccLLzzrcF5aagPgTcfJORH4DaeaQYxMVz8qDJN5Jw3nErVJzuTHN1uJw61EsAxgIKFTkGuLOHuziU0aE/CKk2TQGs3iscKlAJp0vfZMWOGPfHUbxVXMW+X+BJnDmdy7gbJ/Qh42Ea4F3FXTfh+XDCx7sDPuwOmPoe+eKBoSAOGT5UlCzJ011MTWLOLDv7NAU1WCTQRKhTUD4KSfp5X8FR23wLQfozep9MDo9KCHVjBl9EAUTqe2LFg0u69yhqRU8QhO1BF+NunV+oAHyOYB+xjBU8ViBUPFaHb/tbdC7ju29e4LfdfohvvXOHX3j5Fl6/f9N4GnTx4AcHl8VR1/xAwpHAswTbGXmf0kpYBbWO2OqtshP+nHdrWygdGPmG4M+C7vlFiaYLI0xqwhbFqMyBQfp7KqT+IYKyVE8tNyor8bZ2rhUQhvaSU9xV/Wrm7FG5xwN6TEvE5diDF9+KMBcLSDNgCOsmpy4e9SRotkskXK4xN+8j2bhsNj16T6fgkTt1w9PHtYy0ocJ5KfRzceCLR3jc8M+MzG6bWLWxqD2j9GLg6IciMSn3HfxR5goAjchdI9aWFvG1q/j2cJDPOHvUxaFl1jmsbUpHQGFwq3bWw1riWfPKjNjaDwk+VCwuoLJfiyP9TLU4LDng7KSln9mh97m1eOYUrigDzRxOi42tiMIUl6WqOadbEXKvZHwj2/a+IMTlE9/jNzo+c6Hygz/4g/jBH/zBT/0dM+Pv/b2/h7/6V/8q/ugf/aMAgH/2z/4Z3nnnHfyrf/Wv8EM/9EP4uZ/7Ofz4j/84/sN/+A/43b/7dwMA/sE/+Af4I3/kj+Dv/t2/i/fee+8zfZ6GLMS10uYKJafSailuFbgZ9hCrTJjazokJyl9x4KlTm2e0HW2bGDScC53clE3mXGljEMRGUtAPuplRbCfYen0Z8xIEHaoAQ/M/yIqr9WYkmEx3fektk7xqFVzdNS+l+Z3oApWrA30ii4eu0JTKfXMtnEr81KLDiqYCXAVhBbrOHtq2eoIrrWBKxV9Z9m+fU5kkHiDkxoY3rozZVRtPJ6t5m4wJEgKz7tCs5eYPCbeHi0yUD4PuLlSF1EuirTtLtg6cQb8M+uKE8l0FKITZTK/s1KpjKggIY0bXJzzdX4DbEz7aHZDcKOe5EpYbUXSUUdUOmVCWgGDomZMdbtqLJTogRQmTeGSUfn0MVYJ7OuMCID4E2ZWfgXySBTtqLg074eGUoQq7/ybh8TTg1Ysb8NnDnzz6M2H+8oJ+TKDdgsvjAL5Ifs3D406Kv3NA/2FAPlSUmwJODkvuhHDMhLtxQtdlXM49JosVYGkNOBIlz1vDEWPY41sPt/iFl88xXTrkKYAc48mzI26HGUnVX0SMx8sAZrTJcU4R0xSEEL1oSGdgWVDOHjwUQQAGBg1VSO5EQPGrBDYT6OxRzw5J5cYuC8oGTwgv0XxM3CLtn3QrbtfxKAZreacoGkEJ+dpCmKBZSx7p4CSPaefxCuLOexNnOMgCcDPMSF+QAMQn44TTEvHq1QH0jV7mF+UV+QVwZ0LpxBUYXQX7gtLVlYBPaG0783cpvRq8BUg8wSEjA0hnj/gg8nhP8tnr1iuEN+0gm1+qBBw6DdaskZBHgruR1k7tdKPXVXAsLV/HHLEBrGiAEtubnYST4t6HImGfafUfMXUkgDXEkKGKGuXKBAkGBIBaZbx1QaS4eUhtTqnVYZkDcvLwmhRsnysFaWtQdU3d2aZOMjRKU391w1uTxCAgVpQDULOgp4AUhxxrE0ysKM76ndd1CHINNXTWviucImBe0TSxVlf16MaWY7NRu8wRJXvELmPoEsYu4Ug9JlVl2cFK6F0WWf5LWK0hks6t2VyI9bD72I4tit7cyz23lpC1pBbomvMGIvNZj/+qHJVf/MVfxPvvv48f+IEfaD+7u7vD93//9+MnfuIn8EM/9EP4iZ/4CTx58qQVKQDwAz/wA3DO4Sd/8ifxx//4H//E687zjHlebXcfHh7kHw7iPNplSY/VmyNnv3IUgNWADViRjirkSutnSvqoLGjsqeWzmHEUMTYus9zu7GuXRC1YdJdNvUKR1l8nrMWKHhbm5JqMTy9+Q2ogrS3LG9LWx9ajxAoSKxTKBuHYPqZAvrfBctCiJrgqUKgVHyBR6hSHSVtEi6pvPs20zRG3UKvBy7a1vlH9uzdaP6Knd1cOiVsTulylcqxMaxuLGHPxmJOoUEx5IbJFai1AChVex4RxJcriW6EmEfIiR6w2EVZZwFyWYoI7btb5/93bH+D77r6Jj5Yb/D9/5XsA2MS7vjZPHrSv2PWppY+Kz4juPveM+iTh9ukZj693ggaoJ0TtGNNbstPpHkis3wNrO1JJv+ae6qQ3zp7RdRnjl864Pz1bZaoLoY7cguCMcGq27uNuRnAVR23HlKECLoCOAeXg8Nvf/RDf7m9x/zgiz0G4WX2Bv03IRw8qhO6j0LxF0k3AMTtNX82YSIqUOseVq0DAL2WP+8OAqJlNx5c7+JcRMcuiimeiFKrscL+sTpdZ24B9yIKiZUGL5MKvJokuAWXP4ENG6KUdkb18fo4VVNUFWHkIfnLAAwQNWOQcp1tG3gHdg0h9iwZJplvGcsfYfdsJ8dLUXJYebFJWELp7CY+sHwPLncP0BUJCh4+7PZ4NZziqOKUeRcd8Lg6vtWU27BZc3hICt59l3Cz79RoiVPi+IHZZUIMlSKGYnba7CJj8moXE2nKcCSV4aY3owlsjNnMdwStnhhjrXCVfSYrjIv4tAMATS27ShZD2UkCXgUXa3EvRQlESlZ2rzQtl63cV+gIaU5u3nS5wLTJkO8WwoYnros9wqKhILMqwEAr65hVSNb1Y1FjbOdCpgdw8dU2JaYqcPDI8CaeFBFpqtIHaS2uJrL1k3DcH8K60jCCYZ1ZgIFYh5hPEV2nZbIyN6K3XSVKyZQ0Ru379nkGk9yUBxbIHFG0pXviNJo0veUXSg6+46ef2vWfbUCvaXBePZJ4vvSAhQxBjOADNL6cqJ8jmWVFSohVJNncHNQiMSqztvbV3umYzkYpD593qRfMZjv+qhcr7778PAHjnnXeufv7OO++0373//vt4++23rz9ECHj27Fl7zJvH3/pbfwt/42/8jU/8nLwMhK4rjXhn8ivnqmZKuLU2YKxV7aZjY/8QaaPaUluhoAPVeo8rUYukTw7AArXw5k7Er2RAKf+hBnNSJNjnvWj/ka1dYcRgwc/EdTEWCUq0j7tBH4yABeATbRT7nzkDcnuOZOlkEmQCXhCxrSGbtYjs35UJ3ea1TXrslZQ1+IR9WOBgYVrrJLF1wa3ssMC3gf4m4mKPZ1p9G+x75eL1BtIC08nzaiVklatfnwG56VwnBNzLFKUvrsZONUdQIcR7h+EFYbkBpq9kuEEKHSLGL756jm8d7+BdxbJ4hFAxKHN9WtSqf3ZILwd8fOqE43IWGJdYC4wobrDBS4uFNUeHsiyS5SCFxOzDmvLt0PgAZvEOgrYygPkitvPuS2fJDzpLkjGKtj5tF1NIiKWLw6Xr8dve+wBfevdX4KjiG8dn+Pn+bfB9RLpEkRJau22W7zDuFnzh5oj3u1tMH48YPghwM9a+++JwPA3oh5XNz4VQZw+aPZgYlyw7tMNuQqkOw+0MupvE1PAx4jJ3OKUeN92EXi3FA1XMRXwa+pBxO05yvxCLFNbuvaD3lAM6dYhtaGJDQdVEzcvi7c9imudfy31fO0JWbgoVID4y6tONOlC/VzzJC6YDUG4LitPfJ4fo0Fxhu8RwxUkRMAXkVzf4Tx/v4PYJUfOe6mNEeBC0pwwMvD2DdhkFQDwGkSorwZ4yAXNAyQ7FhRUdBlZUzxa8yUi5eu9HmYPKAetC2Cmp1gmh18/KpzLvSkVWJDYAmD01Pku4MLojgx6qZghJwZL2hLwn1J5RB4cyFHC3zk1tfdI52ryNDPFIZeWrXMkJmdsCK19IN5RVEFVUQumlUNnFpE+xDcgm6LS9lxoybnhOqHquVX22ncupQIsQkgLFTAN1ThFljoYpQooLUmm2cZXkhXSsZHft8wVts+VV5EEJEpTbO5mXdYyR0hg4SiuQs0Px64c1Iq53FTdRChVBRwgliQIShYReUB1KcpghLrZDyOg1qJAgAbaWZdTOp/JOeHOOUR2Cr/ociQY4hBnBFQxeYgKOfkMleMPD6zs5Pheqn7/yV/4K/tJf+kvt/w8PD/jKV77SBsk8CbuYXG3ukLbLBmSHDaAVAlfcEcdgZ1JVkl8rb4BpbfFI0OEKrbaqWP/dWkOsI7Ns+uYVrRdtxKat4U4tGyiUZSFySSeUnhua0iyJWd0XtRxvpm8bM7XtpshaM/Z7O6wAyPrzsOGGFKAlcVq7yF6LWFCgNaWzaG6QQFfmwWJISCPtKi9lqR5LDRqCtSZ9+k2RVCs1fxXjqLQsIifqiqwTnRm/WTusFodaPEq2cyx/l0KSnZTU1ClDdtpFjdseGelAoItDTVFAtxBwOWt/fC+7qhwqcueRTlGScy8aRAiP0osHR3wUxUS6q+CdhaoRjudB0JtK1xAzZDxxx3BnaoS/5pwZZeJzgVFfq7V76XAGcHt7wc3TR3x4f8D88SgFmLquWmhbOMr2LaHD5e2I94bX6CnjNkz47psX+Hje42e+9R5+4eVboipYvEzODnBO0rm/cHvEZZzxzvc+4rj0eJw74NJjuUTkSfwetm1KNxQZThVwsaAUccyt1WHsF3zf29/CLx+f4hsfPpPrpiN2FxbhL+lY7f06AQ4h4yO3F0M7iuBLAEMWc99LplNaQjNZu7IKcGjOsuwdai+tj3AhdK+B/oUkDvsJkhKt0m5nBmYki5bLgF8ImQmsZo1MQI0e6RY4OwevOTvhIgRcMdcLmJ8HXL6UJQH5IhJkaxHX2TfUoHaiMPLveyUIWwvCtbZQ3mmBa3OSKQcDUCskuFDl9H6m9Y2YGuGzjlWKm4tEEPhJ5kUq0nayLLKsqi83CwpjvwdL8RLB2v7SgiUzSpWWSI2rahEk92NlGePbOIysKc2Nc7JtEVT1ZzFTTusDmWlmqEjZ47R06EPGvluw7xaUg5oVLlGdpQmcVe6eVtM4mSiwXuc2SUqh7wvk/Z0mKe9Uik4sSEaVz8LAlUrTEBRy60aDGerTsioDWZErITzr+tOyhVg2rLGu6JIhTDqPN95jIWQvfJUKQnRFya+beUYLJttoFwRMruK04QBGr264tAof5hKaRNniTADhDnpXm4vuLiy4iROexAsuJeIxzjjlDufcCS/uU7g2v9HxX7VQeffddwEAH3zwAb74xS+2n3/wwQf4nb/zd7bHfPjhh1fPyznj5cuX7flvHn3fo+8/xZcXaHkLXAm+I0Dju2t2ayug5QFRq8a3224OwodonBRAEJSBwWOBiwWIQE0eTE4N4+iqN9yUGTbmK4EzNjAqX72nFStJCVDV7g6bUL0yzD2r+ydvEBSpcG3naIiKkJnQ2lKF1xwcAKiMxvNoH0OLgPZzWguC7d/2WqU6CTSkggqH4IryW+Q1kxYftuhYkRKdpDQnALnGVvhETRDdWkRLeuj6HVqOhvZPg68orfcs8KXXPJKxSzjPHS6nrl3/ypCbshD8o29ulTUw8q0YraHLePGVXpC1RAiPXneGaDJfPjtwJMB5pM7D3/vmtikkUyjBEijKWwABrhdouEwe1V+jcDzw6svDMhbLUOFm4TjUsSp5TyaNYVzwePHgOQBZUIsle3z0cEBaQkvVrbECw2pA6KyHzg7f+PZz/KTP+K7DSzyJF/ze2/+Md8Nr/I/zH8EvffBcdmRdAb2Vpf1THM6pQ/QFu7jgL3/1/45z7fE/PX4vfvKj34Jv1VuU7CEx9lWMzyBFJPcZyxwQYkEIBUOX4EgiDl7M4n65381giAX32uqrQAlwgVvk/VIDbuKMcFNxPw94DWBhklaQ8g68r5iyE+KvbkqINy6m5ERVdMjon0zoY8bDwwj8H6NGF6AZ3207nOwZ6Q44RrLbF/7okLsKN2ZJ3faM0gE4CKekyYexmq+BgfDgmxXB8oUqGUOKspRZzmMZGG4h9K8MzSXxLDH+CmR85eRUMi8oCUdG6RiFgZyojV0JKqS16LGMm66Ce0YJvhVB9np+kWK5pR2zknwDtXBGl1hJ50BcGPGE1sIglp18LbWFD5JnwFeQk6LWkGXxZqkNHdtuPOxCVBKLSnMXNrM447cAwHmWTesYBd0dQsLDMiCVgyhn1Fdp66fUIlL0u5fAKFhlzNIi48YZYS8IT5pCC8V1obaft2T7sqIO5Bjk1djuHMBK2nVqXSB+OsJfM0VR41I6yMBxkA0qQYoh+/12bSuEsmiERuqust1AWjA1CwwtpLK0jaYlSnK2Wvfb5nHrdxV1DnaQ62XkWQuptY1vrrauuSbGMAXo/8+zfr72ta/h3Xffxb/9t/+2FSYPDw/4yZ/8Sfz5P//nAQC/5/f8Hrx+/Ro/9VM/hd/1u34XAODf/bt/h1orvv/7v/+zvaGeeGN/r+5RWu2ZSdVmwmkIR3sBGXyC/G2cPLXHT40boq2cACD7hpIY69/egxit90nQHYPDOuisaAEaEgL7tVd5nmNJDzWZoFbm7WMzCemW5KYoheC9wXPc2jyVpd9qSIUVNRVoxm7QxxG0WPEroccGaGsX6c+X6rGH7HwNKfHKjcnVNyRGEprFFMiBGyl3qbL7FrvnqnHnZtW/tpqMwW7niNtN4JoCBBAEZUv2Wr+vfmBD0gCUvcL1WhwMTye8c/eI237C+zc3eHW/Rz5FFC0aoKiW+C6IKqL2VRCzXiezJBOtZcEwE1JQJ9nI4FkUOG4mcC/FL0HhXibkve6ObJLbVbnWDsBQEPqCYVxwPvU4vt4Bya0hb0XOQ1qCcEI8g3Tnd1WMO3FYdpmAh4hfefUEAPBNV/GfH7+A4Co+eDwgHyPgGH6f8OzuhNPcoVbClAO8q3hcevz4/f8Zb8UjHvMgCcAaLGht1/2woPMFDOCsBl0A8HR/wdu7R1R2+ObjHd4/3kjx0y/I6ra51ICpyNjI1WHwCbsgK/45dxh8wtPhjOgLFpX+LujAmTCfOkzKNYIXFMocog1d8DOhOCHh5uxwq27A09MepSOUHatDrZJne0EEWBf38kTku36RggZFCJxVFyw/m+W+clmCqHAUbJJ5IQPw1HgnplQJUcjYh3EGM+F46fH6gx38yYGYER6VsKsTgUvij1N6gEe0IFZb3LhjlEORGInkVtt5ld1TIkGd+iIW9QDYqbpoqKhJ2qPWMncZYr6oKHQNgkYxQRRsSdtCD3a+DeJ0zR6CHYsaK1Q4D13UTa2jNy2Zuy9r8asbGJvTFLE2FKFWI9fKtTjPEbP5SvmKyxJxfhjAZ6u4rM2i84o5kSvqzV0F9RpKeJaNTe2Et9YKBwawuIagIOjvrCAg1lb9xpV8OyfZfem5jbGyF8NJ0oJnjWGRcUbJSduXIfNIEHIv+c3nIgKyw3Tp8AHdoAtZWvuAhtVCKyTtOGwWglIc5rQqO6si7Ennc4tNAeT7RV+bv03bTLLDVKRYTCwFyzH3OKUOs3qt1LoljX5nx2cuVI7HI37+53++/f8Xf/EX8dM//dN49uwZvvrVr+Iv/sW/iL/5N/8mvv71rzd58nvvvde8Vr73e78Xf/gP/2H8uT/35/CP/tE/QkoJP/IjP4If+qEf+syKH+e47dQE/lejHK5rWq4hKABIvRjA1JQ6rGY+wopekz2NVyC9PN/aRwAaelJjfUMNxG8gK/zJD90cGrm1e6IvyJrBAKpgSF+y3eiA2oZTe39DPhywudlXkq3kRgBls1qJ5A/wBKji7apg+cT5tQKDVh8WOzJ79H4SlISFFPuJ5xI3EzpATImmEpHUpK1Xy3+LOc/6ma3dJDp+MXEzkvAql9MgOGJwJxbNRLyaEtlHtc/cVZFAepHMel9xPvaolXB/GfDqPOIyRWTd0fKo17vZsWtB21fQrqx96cBwrH4YfdEE1nWicqyQfhUImQuLWzKTFA5noAaHepsbM5+iTEBcCJg93E4Y/PMUkR5FPs2R4Q8JVbkfXZ/AHWEypZtnhL4gE6MOXnkqOjEHRloCXl52KJVwnvpmMEXqjQFinOZO242EOQUMIaNUh59+/WV8Zf8KlxIltl5RkuALel/wbDjhEGdMJeKbuMN56iQJXMfNrPEGVoB2voBdbWMoFY+orcWiu7JdWNBpwuxjUodkXzH2UsQs504IzRqNUHu9VkEcnKtnkaGexCYfDJTzDh9lL0XmTmIn+PmCkhxKH+CyU+8MRYiyZCaRZuPUKAUs6zWrvXIcjPevHCUqCumrB0db9ABgcchLhxwj3Jhxe3PBl29e43l/xil3+N/6t3H/sENNDnkXEE6bVhaw5tE4bSdcAJccqhezOBwSYicS8zIF8OzgqmthfbQQmFwr7Ng2e5skcVaUlh2tvKvAzWMFDqIydECYRO5M1uL2BBq17dqJ5bxIqmUTxUSNb1a09WMbUPGZWp1+mUmQGdaTCwBV0XMiRTcqSvGY59ju/ZoccArwZ6fIiG3AdIOoik2YVYAXTlvcL6Cnq8Ima5QDFzVfXOQ8IkG/kxYLsYL6gqDJ2LYOSSaSbEAbEBK16IiygYljQggaxGjPU3UisobkFj2fA4S/qG2ntpNl+c7TFFGixgxUNV0zCgKwfiYr2Az1UJsLaGGx9VOxDYWsB1V5h6WdI4ttWSgAeW3dO6UWEDHyGz5Y38nxmQuV//gf/yP+wB/4A+3/xh3503/6T+Of/JN/gr/8l/8yTqcTfviHfxivX7/G7/t9vw8//uM/3jxUAOCf//N/jh/5kR/BH/yDf7AZvv3Yj/3YZ//wXUbXuasgvurWdoVkkwj/w0Kh4PWEOmG7t7U/OVRXxWBps7jJL7EyplX2vI1wB9AWMol91x2NMr6v0BSdCLbafyJGCJIfsnX/a6MZgPV27YalzZs7vakNhrMixeLRE2B2BvJ1NgWHWM/Ydm89Ps3AzX5uNveWK1QrYdmiKFRbq8cQF0BkyYEKXJCfdX6TTaTE2wrCJUfMWr0LecuqeLSFEVjt9q2AWbLkHlW73qQFHhPIS15JjLIDYIiLa04eD2mUm9vaBQS5mYskWksrQAvXsSD0KpeeO5nIg0wyYRBSTGPJF92xFgIPFSJk0kmyr5ifM+Jrh7qTpFgfSpvYnFc7/Y93SHPAOXa4OVxwDhXLN/eCkBCj2y3teo695P4sheBCxTvPHvBkuOBhHvD6MuD0OKBOoSkXSiV0oaB2CZc5IvYFT27PGELGce5wmTslpkvvfdGd2cM84FXcIWj8PPcyCe7jgsEn3MUJFYT7ecRlidgNC2KQ1O1vPtxiThHL4mWjYUq16vA49+J0WRwcxUbic67ird0ZvaZpv76MVwQ/7+sq+VRrcw6KtMYqi2wU11ScYnMX9RdCSgPKroopmAfIM/rdjLTLOGNoCekWqdFynrL4a9SjQ+4j4s2M7kszzrc9yrf6lo7tMsT1tBPCLAf7U8Xuf16VX7UQXi8e/+lxROwynt+e0IWC/WESee0QkPZKzlLEwl2uuQ5SXABhljTlNA1YdopMKPrr8truwKzWAKpqsQWPNA9LgvhYN3gyJzGROMKqS7MZpbmsv2NGmBl4hKSDFwJ2Ul1V0sInO+1WVDg4VF7J302J41YEQozhZA4gz6J6AK7mUa7UlDFcIYTrLHM2QZFQa6fLRAhTbLqshYN6FXlfsRtmvLU7466/4GEZ8HoacZolUkI+H62cxwpNkFY0JDtkZ1DNdvKVc1gH8fmRX3N7XLpElCiu5f2QUJWDaXO0ZByhIblNHNLWHEHp2noHnd83BYPzFSFUkYKTRzWEjWy+RkNObF5NxTflFmBtHye5UbTyIu1yyKYztjVkDAmjIqPz8t/AQv/3//7fL9Dbr3EQEX70R38UP/qjP/prPubZs2f/35m7vXE83V/Q7Uojksr7y4BPGw14rdQUHPb/6hwKuWYCBEDkfztJRq3zxqFnQ4qy/9cBaKQkYIX2iEWeFrmZgG2fSwRAQ6GYxXGwXXxfZXHTgQ8muFmRG49GRgPQwhgp1ibLBtC4Ki3jBxDoVX9vhNytasg+vvUX7XUqgEpr4bdV39jPoqpunPZOjY9iQVTbI1LF4HNzxbW20JaH0si7uigaESxnbe/ENSE5eln8zOJZ8n08SkNB5GZlaw86kVETMeYU5NywQOa1Ea0JZrQHZb2DGG6XMYySOVKZMM0RRd1Bm+Px4q99ewo1hQ73slslJmDM2B1mPNld8O2P7mABb0OXEHzFw2mAc9KaQF/AF4/TtMP43j1++9sf4mfOXxJDr1Ax9tJnOJ4HMBMOuwlHyO7UEeNZf0LnhM1/HzNOU4eURLkUvRgwcSQcT7KR2B1SSy9OReLinZNC2kwCc3V4Ne+EA6By9FQ9Bi/haIkdjqnHR6c9zlOHnbaCluIxp4h5iijZYdgt8I5xXiKSQs42llubUsfjR0zYdfL6S/a4XERFELu8+j2Yg20k7eGzkjO1RRyUZ6Dpwm4m9K8I9dEj3UlbopwDso6bvK8r0RJoHE4S4FN4GSBw9Cijx92TIw7DjA/SE1CN4sejHI+qwafsbIHxcIu0iWSISQuDHj1ciagV+NYXO+zvpqugTmSSNqIWW6LEET4Me3XWHUV91N3L33mn7rTqz9GULgB8lsKlLl6UJMZd2dy6qwrRJjE0/lwNhNIp8VZ9VgDAJUYsjBrEYRiQ4iirrJgjhG8CaEqyupr2GtiYvSAsphDR8dAEEv7a6K21vOxxTFfRKs1GH5vvYaKJQZBlCrKI+1jQ9wldKDimDg9L3zZBKambrt7jbEi7IRW6GeVKKGd17VNyLRv6rnMLTK1TXJvvkZygpAQ1S5R5q4YK7giFGWyRMNo6I/2erO2nJg1v64LKkJNkU7l4vRkmv0ayCAICRCdouNvQBgBpD4k1wzo/A2icli2in3SxGkPCLizYe6EKHNN/g9bP/z8dz8cz/FCax8cWfkrFI8csWRq2aBsUyAIvz3MULw7ri1arFmXHY7HlK84KeZzp5LfohznJ2sObMQ82Ch1sXkfGbFFraCHGyi7AjONslwR1pRS5G4MhJLW289Dvlosm6G4s6K3g2BYNVv1uK/1SHeAqXDtHdPV7+xlvXiOxQw80jxTwSrzNVfLj33zf3ucG+dvvLGfICFh2jSxoMPpyRa7L7LCPiyQ7k8ekmRKt8LL2kO6y7Vvk5HEqsiBULSooitkUO6ckNrnRQxRWP92uBc7YJZTqcF6itkmkt++8xDjwpC0eprUoYSXbzgITsxPi3a5f8Gw8o7xFeHG/x3TsQDeMm+GEc5DvU3KQ8eMZdAqYlZPx9S9/iPt5wEUVNDfDjCUH9DHj3f0jTrsLvn1/iw9e3+DFcYc+Zjzfn/HW7oR9t+A4963ld38ZcJ465IcOuau47xN2ccEuLkijwz2PqyNsJQRvGwGPxXkcYsaOFjwuw6bQDdiFhHdvHvEqjoKWTP1VkcuTR44eJ6jVt96/OUlb0G0mT2bgMotiYK+hhuZQa2RwIkYYE/ohNYRmunQoswZn6oJSO7lva8+gHaO7d+hfincKe0I6OCxPvBTdhpIaAqFkVlgwpSIs8dFhDj0+oDvc3Z6we3rBOYtMx3xwVhUH1kwZbSGxqdYqwV9EViwcmA6n2SPeSWFemmINLZLB/J5ASuYdoOofm2iEGAxgTRK2Ocr2UR6gwuCsaqARa3vJrfOiiAcMOZYfMAnnpOQ1ndkv4uTrZ0YeBPEJhkYxITUEpcKSiEGyCem8eHLUohw12zwoIm0tVUDnPm1pWLozgGZmVgqtjrA2JzO1zSXFijhkxCjkUbO4MP6FI8Zx6nE+9yjZwXlbJ3Ru2YSBygdCK5SaqoYhmxlyV+i4udVKwVWuUG4AqJlwuh9ksxqFp0ZDXj2jdG1ia/UaEtxVhD4j6FohmzyI186sBpmBUTvXDFK3jsImP46+trBBcxxfsseC0DxbMoBJC5WiSLv5p5i1RaoSn3IIjH2Y0bsMb7zPz3B8rgsVQFQlg88I7trW13IIjHlsPiDGPM7V4RS7Rh6qTJh0l0a0zdawHbIWIa1yVojPiXZeZhr93caxlq0FobsYC9NqgxpohQaATXGENhFBYczKchOztlugzxVHxtW51c7BFjFp50tv9m0R0h6/QUzaoqKvab4mrecIvio0RHrsrxjiuXqJYN8c0hpaX39WmbLZOBd2DX5sLof9guBD+z6peGQvC6IZx9k156DVepa+u7SAhJORL2qpzWjnmB1Qq1zvsMs6EXKbvEgXvfPU4XTpkS4avapFqVNXzTSTQOcsk0LjFwXWSy0TEys6MaWAX72/E6OkWJBfjJhDxbHrpB3DhGTFsxeC3zxHvJx2OHQzOl/wkAf5XtWhCxlv74/4rYePMFdxEf7WqztMlw61Orj9CU+6S2uTLupH83gcUU5BeC+Z8BBH7PsFb40nfHH/gENccD8PIu+sDl6L4FwdOvVJAKDckaG1/74wHvGV/SvswoKPL4d2nxmiR8khvxwgQiSGOyT4WMXbIQuPwozNLN+EyKNEhz5mlN3cFhCTf5JjDFHQo9PcYQIakZrN9bOvsnD34mQ9dUGcWo+GVhKoiPpFTMwEeQEJWmF26gDQbIKqtJHyKWAeI4YuIT+dsNQB4ejhllX2m3fcfJmYgSo+AGvx0nKelCi7c6i3hP1uloL4IAthyRpnwLQqnEhR3CqZUWUwdaIkEruZNshvm8LEGr7bmFoCTWFirZzGw1NCrKkayRMKiWjBq3RZ3sOhe6zwCfAXhnc25YjMuBRt52Ru7ZiaHGbHcOMaxNnmX0UlzGKe7XcsxT+RONICwAJJka+0IgHtvncQFWWoGHYLbncThpDX9oXOxamqxfy5R3nZw5+dkF1VBeqjuelKcZOTl8LZkBGr7SoBBW0+aIgVZMx6XxvCs5UQpzloMKoT9L4v8EFNTQOvBm/JKcSH9jpcncxprdJfiyehJkCex+IFE2NBjGr0BrT2a+UIl8PVBsORIjwbpEVa8wF1Y1lhoodUpO0mAYgFt2FG5d9k6clTDuDqW1FihJ3OZYw+tbaC7diNhZz1bnzaO5xzh1S9vBYTlkWgPSLZhQnhCDLQ1XWW+iIpuxep2HnrOU2Ai9LaKdv2kR1MbTAzM9y2w2QFkL6OOSOSDTSgFT1No28vq3OJ8TWEXKsTGW36vzpTibeKwHxgan1JR5veJnA1SLfOsU65KCYjNrWOKYCMZFuru+KrbA3erOjJ1WGpGlKm79frpGMELOOjJJVyn1PX3BNboeJFLld8QY4CUdr5yiZRtwldIWb7vSNpv9i5NOdZQNpOeYpyDdRbhPoCNGm8jg9dLKUONQxcFg/Xl+afAgApBUzZoevF7vo8FPAU8Jr36MeE3TCj5dHra6dLxLfyk1b0VvVBuKBD2EtL5nXa4VIiAlXc7CZcQmznEEBzGX64DJjngHIf4S+ueTbwMeLVbsQYE54PJzwfTtjHGd863uE49ThNvhUbt90Ft2FGUrLr/TJKPD08Xs47ZNbrWqW46Hxpbb7Hgwefgvi8VEKJHrHP6PsZl0sniouepSipDpfcNcTUe5HEey8Bhc1KvDg8nAb0fcI8x6v7j8x1WtsfFGTnWULFeRoQzsI74SA+KpTQlC1Oc5+Y5Ocu6fnvgTxo5lNkyQeDLMDWglt8j3AfNFEXjYgKkp0tk1MJsb0mYx6lnQMStKQLBW/fHJE3G5HT0klODRPOU9cylmw81+Ll+6vLay0kkL8WHC0ryEEksbvSjMCa7Xu1F1MUoqEs0vJo8RQAQFJo1E4KpDISalTzuxOvPiEO4EAgJlHWOZNMC1JdCJigSLMhBfr+rKQV3tpNOIZX5VTVuSGrz0dbnLPTuVtVcbGiHxPGfsEYxZDMEABDhKcUVjPHRfK9alQyr3NgJ2tDCEIiD6E0Hk2tGoxaI+jirgJmzRPJDwVdn1rrVuYdmQtLkdZS0rGN5FAXtyoBlWNmSi7Z0Ooklh0yIJ/bEH7bmOmmV95M1h+CoPl9KNg6zqbisWRSEq5uGpVP9mZ71uZgl31zGN86184EHBdBVKcY4csJn/X4XBcqlxzhqsdcAgJJJkwgWRR9WDC6RXaXNklXj0jSQ68sfiCZpXVQqtzoIRByUjjZVaDDyvLWfqMLVXr2br1Y7WC58M6LvI2VNLbCfivCIu1DXneZJCTImmX5520P1uYDGwS6Q6BPqYW2AwXQPr8GRdlgtJ1DewxWBCaqM+HK7qZPvIftzJOiVQCuVD7b55TN65h02eTKdkixsiIyWxKv016pFSrtM21g/8ZIItm9UeG2eFmcgkzAQnA2czA7X7WaYgxrAWjoUHWtj0ud5DGRF1UOZydjw3rhuuNrRGysu30i4UctZ5HTUrc6qLquoB4jOAVMs0e9lR0TOW58JGagaAYPvOyGXJSxWJnw0emA4yJ+Q95V3A1TsxO/nwdMOSJVh1fHHaZjL2MoaPaQZ9BYxOmyOLy+jDiniHd2j3hvfEBmITdfFlX6BOEgVYi/zvP+JFC569UYqsMlR20ZCbfl0M04xBk3T2fcPxvwS6+f4XgakB66JrN+ursIzLxIK6sLBd4lIT/rfZIUDRKSvJ5vRiNTZq+S31hkYSkCvZMWdqRKhxgLxiHh9CVgeoyNT+TPTgoTh0ZQpEn4LA0gZDHjq70oeJgYKLLRKd61sYWuilEgnI4PXTw8Ax0LwToQcHYrnc3J4/wkZFZDzXqfkarHi9MO8xxBm0VDFhBJY49qMbDkgOnS6XwBlEm8d8hkqUbujoy4k/TyMoVmVmZkVM5OUOOtWMN4XEXOPylSkL3yUsjBzYRxZsSjKr5GaQP5WYu+YoqitYgpKSBrBEDjxmihzsyCwBDWDYAqP2Mon0CK5TrJBtOpeomyRD/k5DH7iBfFcoV0gU7KjcmrQofHitQpB0TDa8viUL1uqnpBczptS6bicVkijrMHVTGXa0VKJzEIXZ+wHxYc+rm1KnOVZPEFkHiLqMj54uAWSVWX1puNY+UXBQaP6+YLSa8bYUVaeFPQ6NxmrZ6U/PUahhWpt0KFtVIwYzd2usm0tHoTPNjw8DIvBb0PpiwbluPSw3/aBv43OD7XhcpcAlwKjfMQs0yiS0ioIHRO3PAqU1OYVCZMJWAqscVZG0TliUEqdbYkXkCIrEUXJh+qVvCycBWz0d8UIAAk50UHx5Vyx1oGBvcBanbEirCIzJUtcExfw1jc1ci/nzqw3FXRs7XWB1zrwW4Z3cY72ZJr22f7lNYRgKbskV2Ib4odkxA7WEHitNiRVtAW3dIz24qh7WHtFntNI+gC1+66TaoMIDNdqZ2MpW78CnLSx7ab1gdh9TsSi+klr6x285WxQggAnLeMJbtWQIEHSGysWSXHlvVBulhYP7lMYR0LtkvUiej82IMnsdQHA5iBhTqRCscK6iTuPnQrCY1Z0n/7Lm8KOWnpeFex8xm3ncjH7+cB0xKxOA/vBKXon2Y825/x3TcvcCkR3zzd4WGSZFtmwnmOWLLHIS5wu4qvHz7E8/6Ej6YD3hkeMfokpNks7dLRJww+tV1/Kr7lOG3H1dPugu/ZfYh4KOh8wYv9Ht/ubzFduva4J+OE2ycTOpfx8eUAR4ybYb4aKxNJkt6W7Nc2/I7RhSR5OLbwFBIjDi9FBRHwZH/B8/GM1+OI992t8tWAfENrSJwtpoyWp2SHy0D32rXZOQ8e6c4jj3rt9TqLZT2LiqbK5+CKJn3njlGztGeME+OSEG3DhbAcI14cdrgdZsw54Hg/gi+hLXp2X9tYH+JqJX8ZY5vfjucB6RKFS+UhxbTNVzrmjQdHDrLjDoIYM6mnCrByPRZRxQFAPeQWwifZOIzaWcHBcIVROy9trXmNLgOgaJ5Ind0CuOSVKGoPkLucA6/IX2Bp32n7RAraisqi6CuF5P60jYfuUYRjRKjF0PN4FWbKycm1zxtFqGZlUSfKQR+qcgRJOSDieGvcwFIdchY0t/Ysc8Km3SMbYonT6Jx87qQ7zuwqvBMzT+/rWmhHOedWnKDqnkvXiLqTzReYUJIUNs1sVKcmKy4Z3BCVmgm1SGZUk4UTa3vNtXsq6/kpTpE7m8o0ZLIu/mpNolhh/jiVoWnN8h1p/k1Gpk3Zg5fYFrXgC6KXNs7raWyPM3kUEWMuoUFV212/SHsLSt04oZqRmHIWjPQaVAKcARQdzUZeMtivJrcmVjorUPjKRtraNVs7fXLq2uisXaNQ9UbZIzt0wAIK7WjyPaB9li2Xxd7HVFtrm4j0uYQMAFme7x03AzjS80hAI1gBwFI3Q4jlyyasBFnjquT1Ua1A2Uqgg6tgVuicqElhvZrC7cIinJeQsNXrO6C9liUq5yweBFKgiGNpF3MzFptSaOdlexCtfWIzm6L287V9FnT3lkj9DEg8aeQc0Hqd9f+tNWSFJyDwr0K4efJtETB5JDwj9hnOMQ7jjNMkC7n5BRnUb1CrV8Jv1P+b7HcMqSFe3lXsYsJNnPDu+Ijftnsf/9fdf8a38lP8P+J/j595+R5OaolPnvHk7gQixmMe8NXxJd7uHjH65/hC9wgHxgfLLR6WERWEs8vN7C+QWv2DcEmxycyPS49XYcS3wx12TjKhvrp/hbvugm/cP8Oc5d4dQhaey3AEANwvgu4AwNAtgiyoIslmR0MZbSGwcwVowZAFwucOcIOYanliDD7h2cB40e1ayGUcExKEMA0nPkJlL55J7uwknI9lwYhHXQBJuSzw4mjvuJmltcC5ImNfnuvktQOatwgAaTWZK4IRbxPhfBqQUsB8icDrDuGiPJTRofSCrNUqxXb0UgT2PuO2l2wl86i5+IrZR0EBgdbuKYsyblU63cZyq9T1VAszX8a4fi9UgKOEP26DVUsPLDdyTsJUwQ7wi16TSQo9KozSqSopElwvpFw5L9ImM/fYGqEW8+JhUyH272Zb0ynXBJAFkkjuO9sHSaBnFQ6hFwSKK7S9vxJfyVpOALbcRHKMrpd5xDxFDFHIKcrn0Pu9EV57LQZtTCja7nU+mUsAVSnszcFV7meZt8ixOOVOHuxEzo7UqDr6xRQpsnaPl6Tn5rybdb3RNhtVK5Q9rsw8vSFjqyWB/a4UJ7wooG2GoT+vi2/eUHbOGA7FeWTPn9iIYqPI/U6Pz3WhYlJWO3LZyNn0MJvfpD8v1TWvEiOWXp1I20nQyoSOvqBXspHXanJWkpHJnr2yxIuiLNUqWGhhYZbHbx689tft/wZjNwKYv77Qoooo+v3M6E44KTazXNntKxmYdcFit0qUtw6vgsDookYyKzly7TsT0BZAOVV8VXDIOWWsVHt84ndvDlr7fefWUiYV3yyZxd3WkpfFeyVX10i+ySDTFDAvATkF1LzeNL4DfJcQvHqU8Mo/mZa4yvIMwXHyvds1dbyqXspa7Bm8TuRF8uc2KJUx8AE0x8h6fSNDERrnzL5ce+9+Aw93uZEEay9Qvl0z+6zeMYJ+lugqhpBaa+ysaMc+LoiqLIi+YPASV3Cfd/jZ+Uv4KN/gVOSxRX2HXOCmuipMeH++RaSqCMoNOpfxkAZcckQFYUZoff7oCzwJZ6ZoAZmrolZMOKa+ydT3YcGXd69xzh1eXnZYssdj7jHlAEcVz/szKju8Oo8CU3uPzpU1cdzGkXZXvC4C2XwfVEpKRVAKnDwqgP3zM45zh19YnmPfJeTswecgfinv5NUfg9CKT+4qaoXKbdEQD0NZ/AzEE6F2DnWo2mbRYkM5HiSrq7jXVgJFgM01tgCkNvii5qHWIimWGM2QCABWc7ujk0wdmyuyw6vZ47zvsB9njNoKytWJk+j+gqOvoohaVG2l8lZioJrltqF/1mJmLbYyoZZVwsxe/FncpA6xjOarUgMw3612+y1lmuQ8+EWUQWEWM7llDwDqUeOk0EGnjrhKBLWMIsckyMvFoUwep53HrMnSMh50TiMRO5haCUFagp9YPCsESUmrrb6ptFoRmcVErbVKbJMnbyTtIkOddP53Q2k2+2BSNEUQ+VQc5jRIHIh+DFPYdKE0j6NaHc6hQ5oCqvOg4MDL6vzLnpt/i601HHmdbgq1NhqRGvcpQdkmQCZ5vm1iRTKOtllrj9Fh0ZSVBA3fVR5Qk4SL2jTpGmstyk9bAr+T43NdqHRB3P+MpbwuuOviSUwoFWD+ZF9M2rRyQrd8iLAhCwVNlfQGrzK1nBlACyFFWexn3qSQGmltcFob1HoQTFKNVqi0wmIDDRu6wpvBYZP01gRui71tkZJm+KOTkBVibz5OXk/f09emArIzZ1LhQGv4oNmeb49GsN0MSyHT1qtixSzzKwsJt3O5/d4+3+CzKoquh7hJ0KccMKegrrJhzXfysqsnJy6P59KvbbmGpqyImbk3ei+qnJXfI+Q8rmtLSHq30iosJG6PtMnUMAdL4zQBECmjLnitBaivRUHNnyoBoSL0BU57u0YUN8SkjR1ijDHj0EmP+5JjW8A7RTe25/sQZmS1tz7mHlMJ+HjZ4xfOb4ltfY5473CPt3ePOOeubQAuOaJ3BR9NB5yz8B1eh4zOZTwuA06aARRcRSoep01eCCCZPuepExUDgGmOuI8joi/Y9wtu44R9mLELCx7cgIsqlkoivJz22IWE5/0Jj7ser86jSMOBRgLcEscBGTe5uuans21fUgXig4SFplsZ1dOlw6VPSHNorrbpEmGxF5Q0s0ddaqls+AbOofTUPC22ap1cfEPH2AOVNk7TTIpGyGeG7XxZEIPS28IGsSnILAnJY8Zbbx1x08/48PGA47cP6F55gNS0zUkIJWfCvJkL+yjOwqU63I0T7sYJRIzJRWQX5HMacZN4JZzr52yqR1YUpBJqINS+irmeX5EKZHVu9ZCsqUAimcbG9yWJfBksWUF+ZrhUAXhJqLe1XgsGVH2Og8YSrL4wrE6WxXnkQshTaLYErATS5gtjfJiqviLVNfTDzB1NnWU8oasAQJYWbkNPt5uRSorGOCka1NqetHiWayHzdSkOM2Ij3sq8I+uI3+TnBLeuKzEUnGOHOQrBty4a46Kfz6mlgnPCv8lWMNhhRTKkXVWhBGdrSdkGuQAMLe7DOof6jYT5TZ+jGrS9nZ0YSmYp+KoOpUQMVjfw6Mu1/813eHyuC5UhJISgC9MGmjfU5Josys2cxpnaBWuxAoPbDDZWnsRWtpbqygxnljySSuLuGbQdMmF19XNsi5e+15tkTbfxirDJwA57zBvXdIvKOMdXRYbxTK4IsLz27rk6LVZsYn+zJWSFzYpKETE6C0Ej4YoYkTZrAKH52Njjt4WIPU/s+AmO14JFros62kKca0XympHD+hm2kmlD0VLxWFobRwuOwKhUG0Qb1cI655UsZoWJWVQTVRBVRU/WoEdBT1y7AZmF6GznyXKIDOFooWqQNmDO6zWs5Fpbr/2sSsJzy4UyJj8Av4mEIFLjJYXzx5jgdEHuvCSVbs9x5zI6vUZ7vyC4Ilb3m6LlmHpMNarSaodX04jOF/zuL/wyfsfuV3GuPf7387v41fMT3J8GfDDdIFeHKUdMOYAWbgGRAOBdECK7E64A8xpiySzkYdxHwDOWoaCMBbUX8ubDOGAqAY/L0NqxtvOai8frZcQXxwc87c+YcsBx6nGcenRGnmz3xIoSLktQPxag6xOcr8h9QeoD3GOAnwnLywFplxH6LM6f5yAhfAD44kVZoUqKGrG6vm7kp+wYeWR4kowgSmKw5i9S3OSdutFGFldcyCLvJlG9uIzWHnaz3KReSaXmoyQeJ2JlXxdpNThijF3CcSyoj77JjstOYgNsATU+2rRETIsgAV0o2HcLBkWIc6hYfBSy+baoU2m/qarAQJk8qIbm48KRUMcCDgw/FPTDImqr2smX0FT6hk4AcAUaxCftnRodwoURzwyqjHCRc+syo0QgJ4CJ4BfxbpH2DZB3hDwSyqjntRBQfDPo42CtH1wVWhaJ0vY9hhhpG8vPa7ZTg5Gdhh/G0hZsmVcc8hLA5wB3Xi0JpHgrDVGvZcOrgxQSaQmtcGn3/aa9b9xBr94kwQmafIlJruVi897K0zHflJLdqj4MLEWj8Qz0EAdbBkKVItV4c8Cao0QEeGrFyXaOs/FFulEzZWkNVeNpZIxzocbjbHPwb7bWj0mmmMVsxvTbpO2HYpCsVqhed6fMehI3i6stCL3PTT2UWbgsqUo+iRUu1pbwbu39m6eI7Xy3hRMA9TqRf7PaRTttwdRK4MZ4Qrs5DIU1l01ur8PtuYLA2HfeTDQbxARMCoECq3Pj+rnWx8rv4dAk2lWhf6+FXKfFhKOKzAFVvU9MWmyPAdAcaLG5+aRiEp2cI0ZAQYZf05aJMfqES5GddW6EXBY/HFUHzUVSg+1mHfuC0mXlLQAx5kb4spssBDGgs8WwbCaQLggpMfqK49S3dhwXAnlGnR1c5IZ01E0h/Gb7CICmuWphzOtz7DFi7ifXhvQ1fVhJkdsjuIpUXQtxNJTFikRAWmfB1RYEGali9AlBr0WuHr3LQIAUHDUguHolA7+UiA/SHY6lx8tlh1PusGSPD08HjDFd3SdOC/Mle9wfB4RQ8exwxm0346LqouCq7N6fM17RYYXFAdzuJrw+jo1LNuWAUtfCLGgr9ZIjPpoOyOz05wWXuWv34puEb2m9mdqOEfYFz3YXDCGhsMOvvHiC+cUoyEOJKI5F5s2q4Bl1oc+ycHNclX+0kBJioRk5unD24jprs2m4EPwFzbOidAz0lqEE1Bf9qqBhbUkQtSwgZwVTsEVP0Jh68Xj10Q1evzyI82ioKLuK+OAQzgT2DnVXhIPhGCV7XPT0lOxRJ4+XdY/Hrm8+QUGVZ3OO0u4L0nJ0er83FLk6TFEchfm82chkBy6MkgmTjmmyOSRIW4gELJFFUyXCNQKlJ6QDwS+E7oFFFl4ljdkVKXBE6gyRNFfAJVajPMAFaQ9RIfizXpeEZgEAoHlW1U6SrVsysU1L+vmIhchLRRGdiCsZNHnGMCTs+6VlXt1fBpyqtN7comhr1AKgKf1kzrDgSedE0ZbmoB4o8iFrkflmdjqIWNo4u2HBzTCjDxljTNJWdYwjE9KinQN9bpvbrfAgBnpRB/p4TWA1VN4I53kJ4sdjhbgiMrwhj38C+d8g9g2R92qWur0nsxMpur13+WR34zc6PteFCusC5lxtclciBooHfIFXW+a40YAbaYk2RYQjxhBys/oNuvusnLFUj3Pu1GBMJvTey89LK07W17a2hRURVn2vOKEcWw6MfBc1MWofioXqQYAFb5HGclPMjSzmnNlP42rStndjKOQIKVZkduUNinJd1fPm98wrDygGa8voostOzNbMo0bRpg5A3qAqv9ERXIXj1V8FAGb1urEdthnKZV7be7ms+RMAEEIWNKxbEZhSV9dfR9L3lZ/L79fWgbSRHBOWHLAsvnEb6uwx3M0bouZK0rRdvJ23lZR8vfOwZOd5CSjqlwGyXWvFMKSmejESNCCfbckBj/o6yUkhHnQ8m4qtcwVDSOhcRtRCpXcZkbQX74GLvkbvMm67C4Ya0LmMJ/HS1DqVHb4xPcNH06EloB765YoLduiWltlhxdIva77SUjyCC82TaAgZ7+we8X97++fxc0/fxS+8eo5Hteq/6Wecl4hLiuh0bMEBjkojE1r76DH1bXxEXzErb0jG7UadoVC0jXloCyj6gif9Bbk6vBxHpJuA2ouknM8CVTOxpFqbad/k11ZdqFpICHKC7ODOTvgpBc35lQNQRjFD8xMQLsIzqQOBe7neIRTMMcIl1yS5NeqO1Mu/w0U7MJ3a7nu0XT+KBy2EMlbQLoOHirIQ4qND95qQKlCfC1m0JidydqvYs0M9Stth2WXEPsN7ybviSebFQgGL78ROvpPiHXqda3bgoaAoaZYKgWZCULVauXhRxzBWzpVza+HAKqXVQEPzjqEqCIm/APEIdEex5q+BsNwS5ufcvGfio0M4agtJ7f85WPFC7d4Ca9HR9gs6/xkqVjcAkiG/WZ7jIMUUkwNXRoVYTeTssXiv84XDvARpwZAWuQ7y/YcCp4RUH4rGVYhUN/iCI4C8mFmbfGB2InkuOt+bYqcUmQMPw9zWMa8FD5Eqc6rOP1tUhADS4jjGNR+t8BubJd5skE3NZasQiy1HqoSsCJujVSjQeI7Fqe+NWwtwI2S3hUg3zExvrITf2fG5LlRIERDbwS8bmSyAK3Ox7f8BtBZP5wr6kHEIM/ZBSIeFhXcxl6BwehFZlraDlupbkdQWjF/n9G93fluUxX7nlMBbdHIFsDrjqo4exHrzl1YN26LmNgNnezSEhA1ZwBu/l8FTq/6O1wnFBitDFvbK1HbzFiJo58jaYYDcCH5znt8kK7/JVbHfGRog1zGos6FK9nRGT8VLgagyZDtKcZg5NK6Q45WjZGZGwQuakqtIqo0k2uR1Vc9xFd8IM5KinbSQLOJgW4Rc84ZWBGVdRG3xJHRdRhgL5lCxzAElO/ggzP6xS+1zkBNukD0/JckvMi5ULk5aja4CQYqRzovBYaCK3mVFVFanZo+KuAmGPIQFDjN6l/A0njH6hJfLHpkdUonI7NU4seAmTgiu4mEZcFx6zDmg9xnP+hNGn7TwmfBi2uOcIh7nrsXKd0GK/GPucRcnvLU743aYm+ou+oJcHLxzzQzO7lFDN1P1a0y9ITpOrdf13G89IJyrGIaKxVWUJAqwx7nHTZwal8oHiUco2aMcgxBBA1kNL7LwXZa8r8WJyoUJ1BeM+xnLHJHRgWdtu0QGqnJZAJXPEtwkBFs/KcE2OrCvQBTUQFQsSnqMOnqcqGCIVRGkahsxDSPAM/wiRNLsxGSu3MgiHR8I4egw7zy4U/jd1GSqNjQOCp8ClmMQjgMLKdeM58zuv4yMbDriqkiFbaAYwutItBJk9W/uKxBEWl+TA/sANwvfhSPAu9I8iGS6YeSdvL9JmsXzg1B6QWZqJ58/D6oCOgsCEi5oBV7uGGVQ8zpAlF5JHHnNGM1luR4uoRWKcgNjJTxnQ7WkIEZ1qBQwAdKygaAW9RJAs/rfdEK2dmMWtY6NJeumMKFmj1ltEAS12Szmiu5gC3yQEnjn+AmjTGYIukuMSlogWOEBwHUyxi2EtW2YFbG9SmcuG9WTTNJo3iuZwMk3VVAN4urr3Bvo8uxBk0ML443ckOKtiMA26J/1+FwXKgDaLn+poS2mvi0S6yLC2kYgYhzion380ibj0SdEJYleSocFaGiBHWbKY74tg+4EbfEsmwVyexCwIb2i9fa2BFgxK3INanNKkiqzX+PUITeryU8BuclXPoM81/qbcg7Q0IC2Q9TiZFvh1i2as1mAgXWXajfJUgOOqccpde17bx/fbhZcFyO/VpFyRa7F6lTbfsbU2m8id6Ur6N/aMDl7sCdRySj/w0zCRAooPX47P1VdIJvETk8xkgO6Cg4Vt4cLdl0S9Ki4q5iCBmXqd7kqx3jlEOXskXzFk3HCGDMeXY/TuVfVmKIjmp5di28EawCyY2ICkUN2jGJE35gR7TyTOAG3LA3d1pTVBq+1gHqXcfAi6PRU0buE3iUMLuFXL0+xVI9AynEJkqdU2eEmzPhVfoJvP95gKR5PuougMU7uGwfGt+utqn5Evr/kgA9PByzFY/CiYPrCeERlwv0yyuNoPX9bbtUWUUkbqNiQMSs07RpaS9T7irFLGDvxgqnV4eE8YMkewQvhN0+xZf/ASevAVYjBWZKx5HZZDPkWJzlNLDB4ikHyhHxFKiOouLZrtKwbJlG8eNZC5Uxg55EdsCwedHHShjDiLFNbaMAQTgsBxv93SdAUr8651rag5MQRt6tITwqYvCiP7j1qdKgBq++LIykg1GLf1C0cZYEthyprpKlHZmknxUfrV6MVMaVHI9GSivXYiipAsrJ6WbBr7zAxoUIQy5aBY0RVmzP6itIBM+QeNvdfQPxrvNn/MzQQUXgsuBBKRxLGuK/ATcLt7UX4gkvEMgWUsxYUmQAiUNUIACPXamhkk4Mbp0aLL18IfvGoJwfdz8AVuR5+kfdOTwr8LmMYF+z6Rdtp5s2ENs8U9VwBANeXazTbiL02TxOkhVcc5kkQzlactydRQ1QAqOpHNkCm+jIE1lrFSeeyxunUDZsVLw0drlIoITuNoliRG9Y2tXO1kZEpkZ5PsYVwQZF55QkRhL/X09as4js7PteFiunQpXhwVxbTK4GTW3soqiLiEOdmsQ/IAiq7zoLoCuYakJQoKsiBb3k0ABoEZwFMc11N51rrB2uBZJWkzWisUKQNN7fZIVoAmMWUS96DDARWg6NP681/4v8wlARtMNtzAayqlE87r+0zyrElswJiKnZcREJ67UWz4kpvGrlZWvKbLaGtQ60VKYakvEmenXJoi8/6PbaIBrAsod2YRWXLS/aNc2KLmXltWJDZkhwwe7lWSf029DwHt/ZcvRoYoZGqTSa89vPlGm/bQDLZLMVj3y1woyBz87R+Fytem1xcz4ERGskDjqXdF4OQavdR0otNZRWp4MZPKOwwbwq9Aidjm6QldBdE8nuuHVINmDngPo+NF2TKobf7Rwwu4Zh7OEU4Xk0jhpDxct7h9TJqm1Q2CkYw74OEp12SuKcm/S5zCXg17+AburNKz61YMe5YcLXdb8BaJBPELyN4UdYsee2btw2Jok63uwnMhJcPO7w+HiTfZVzEtbP4lezYse7g9cbJhHLxICUc0iT+FRwIyceWBbWMBXmmhkQQQ7hmjlG1EKEiu35pPYgMPT7qGHHy3hI8qq+RV/J7GaWIQHZwRZAAVo5H6fWxiwOGArdPyMTAfYAlNvNYBElRZIUKgeGavwZHBg8FfhQi7M04Y98tOKeIj1/doLw/oH9Brc3iJ+WNdEC6JSx33NpeYCHJuuSRGaAxaau1IA0eZREui1ja07WhW5tAGGVfsEAKLqc2/6StkNaayRpzoN8zHRjlUJt6aUmhtbSEf6QLaGAULXJqpwiQvkYZxGFYzg3Q2rNXyiNqyJFLotpyC0CJUEaHWsTl9cRdc8Q2dNZtvGmsTb/lrpgipgvihXRSAnTOXlorypeT9gptKhWsSJm6pkuqesKTccLz4bShMhCW6jGV2FrIdv+ec4cpx8b9W3KQDVby+naK2ihRljOhRGnRWbYZabvK2j+G4lh9amhK4N9khm+VNSWZZJHPuvM3y24rKFCBLiQc4txyZyo79G5RAq5HYo85R8w14DH3zYPC3meLAkQ1UwLQiiPTwq/s7usWAIAr34ftYUUF0eq3whXir7DooHSyjXJ0nbUAWGtpHRhb4i2r0oggGnky2Z4WL8Zs17+uxr8Rap0u+qxoykXVH+clCu+XRD63lRZv/wbwCWlyew+s5m/GR9ke1mo7p4gpBZWdikV5i3x/Q6q9ZI8+iqQ8pag8lTVoMG3StqOXn3ElJCZ0+0VY+q6i6wocyTUmoBU/2wLPdh9SwDBKWU2R5Pdrq+i8xHZOoi8o0WGZAyYfkVVZZBeA1CjJYGR73tgl7LsFN3G+Gs+9l+LgXDoUbAI49d8J0u5K7HEsAxwYU404lh73acT9MuCcOwRXcesmAMDrNKKytIRGn/A944dIb4ns+ZvnJ/jm/R2cq7gd5tYGFU5Y2Vx3xk2cccpdKzattWPP2W4qFvZrEdrOrSrVNuPCt/HvW6Fvk36uDr4yxpjQh4zLEHHRDQMzCVKS1p0iqy06E6MZm2WR8VuSubPd5NljyQMWQyZ3Ii2P9zKRW0hu9ZIc7Je1ACLWzi4rMVSVYRZSiExCBtVJgbMWK0JZasZdVYMCKQM0a5k6Shsoq2cG9xX9kwlBW43poQNNflUu2cSTHcqRcD4HnP0IP2R0XUbXJ8zvEM6uR7x36F8D4QzEE6N7ZLjkkA5AOeh1TtIu8ZNAFEsnnKv9OCPGgtIXWaw0TdqQm1aVAVJQqfy7EMBJEZt2TUjTqllaPg7AgIYKIRNw8Zi4h+vKmvocxFnXhAllcaizg59pTaKeSdylCWAnrSbuuKlitve8mxz8Wb6LebyUE2HZCZ9j4SieLLO1s6QlRbG2tolxV7yralQqNhiHTqT692HEvZcw0HmOqNWv3lpNeSaoC1SOTZ6VMiAt7tNyvYbZ/WjKTSPeCzk/r0g4iUI2aQG1uIrivZgELkoqrw48M0BePobFfBgAV6i100GsMufNJvkzHp/7QsUyXwA0VGNrLFOqQyVC5IKpSMsCADqd2E2+uVRJ4j0lySoRl09Nh/UySVW3tjS2KE7bRev75eKbrbKZhhFkwaqakWCKE+u5N0mzoh6FXbtB2AM8CMvfrPRNergtVsKmUCnVqnCdOb3uGltLQVtQokNrZj4AmjpIuCsk2TkkyIe1X05z175f0N3AVtotCEq9RrXeKFLsGkpy8oqi2N+pelxSxKxISlIuCaut+UpuXf00AIVZvWstFeckVTf4gkO34PVlbEVPrQ6HYcbdzQWnWPDscEYfMl6dx3Zt7Nq++blNuWVtOEdmJufa7sEeUyupWdR6y439gsc0Yk5BvkeX2/cRVIib7NfGer8hfVurJ1Jpj5k3njZWpFzUzG1xAYEKjtQjkuQDPaYBj6lviEiuDsfcY/AJD8uIk0ZQ3HUXfNfwAt+z+xCPZVCfllUOfczCXzHisnG7gLUYtfujADimIATBzXjJmpy9jgN3tUmoTMAblgEy9tFaaFagMpMoiZgwdkkNtDLuzyOc55XUDKwtCJ3wRaojC4IZsekXkcwYtbjnoO2G24Rl5+AeA8LjasRVI1pekKl3YCRTiLGZSwqe2SRvXBWb1pRbofN9a38YZ8QlRoUDkwdZa4dlQVsuETmI+yplIf8CwvkoO+FCuclJa2WSz5P3EZenBd2zCU/vTrj3BfPYo/YBeSB5DRbpdbqp4KGoOsQ1tCE+ElyOWCYPfEGvTV9QALBzmoTM4FnSgaGeJbRIxpJNQtvzoXUhwECYgO5YtQB0SK8cFhakxhWgRo8yepkzxwzS9dp5KQ7SEpCPsvhTUVmyImI1MkqvRUBfEPrSeBymqpHsON2QsBQ7/kKIL4OQfu0rlLUorE4LSlJ3WlWHRm3lpuKQSodzilfz5BBza8sQYVUt0aY4cWsKs21qcvZ4KAMeL6JgNKS27xNuhhk33Qznuc2/ch+t853XzVQqHt4FLJ6RPKNwELGKImP2/YzX1Jy1GaiFQE7XNCUAM69Kxc9yfK4LFcamOMF6cre7Od+2D8Ax9Ug6weZNq2gqsfXBK2QHZ3C6I4bTFTDozxvnQSdCW7SkTbHaIIegsB5xC2eqrA66tL6mFSxShCg/Qf9Y8qbI3VZUhtl4FnTVCgo6Yc9XlsbANgLcng/r07K4N175uND6PnYesip75rxa0JtktPOrv4qDGcPVTyApVrQAKwcos79CVZipGbrNOeCiHhAW0ucsjCysai6TpbcUU0CDJlkhVZErp+LRh4xcHOZZvAj6mDBGdX8tvjH07bXlulGTQ9vYY5bz3ce8kkD1OjvH2PcL5iStyZbuWmj1PnCM3U7QCDMZNJv7Nw+7tdciZcHBa6GiqIqNXwBCQmWPS+0a9wdVIh+qBkmm1tKUe6KC4LUInxBbVPvr84joCj5OB3ypfwVHFR+5A75++BAAcKmdJCXrPbRVJlUmnFLX5P12TjtfmjR6zuLDck5RSLTaOiqbCfTNw1Ap+7136uapXjOpCApnrawF4uzbXqulB29eOygBkKlB3UwCbwOqwAkMNwmBkmaRBPsnGe+++4gXxx3mX7xBOOnGJbBwQ5zwVigTSP1SALmvXSawFk3s1W6gGcVxe50ahVgKaNFjJNtMCk7opsUULZXANYhbObFkB6lHCXpFW4PIr+sgaiG3uJYJU4sQ1vfjgtxnTDcdzrNv7VF0Fb6r8t6zV7GJbIr8JIUP3zvMbgSGldyKQi1DSUjBusgpIZmKbZS03gpWOKJBai4zwrmKlLkANbrGFaIClFGkz9QV3N5c1AV2FUAQsZiTVQIVQVaag7CjdTeXnWS8JafjhRTZBuqgOTxeCkC3AP1LeUwN0vazXCK74Laq5A3K/ibPqo1nnVc6DfbLXmTyhto7X9dN8GauLkVyhiyn56q9T6zojMOUAqIZzG0QcEDtNiDZ7VulkfcBORTUnX5ezUVqSiN9D2hx3vxrIIi2qSzTb7ZCZc5ime4Izcmvc6sRVHBVevi6+8rkG0GvMjWnzatKUl/bFs1p4+cBKPyvChST5G5RjegrHOUrVYoUMbLjBoz7gFUeps+VDBkNelo27QU1n3qTMb2F0OzR9t2tgAOjKYi2PWFpD9G6QyNsChu+epydm6VI7/I8S+80amrpoLt+K+K2vc9PQ1HEafbT4T8jPZfqcE4RcxblRsleuBoEhE6UOGZatV5DKZpsgbNFcclBdwYVRSXku34Re/fsBQnRCYOZG2TKLMZlZm42a0aQ5TpZcepdbSTYIWZk59qivO8XXFJoZoNvIl87jXnvfVlfi6l5pgBoxXV0YvB2E2bsw9wI4IO7LmwKi6JmqrI7C64gV4/gCpYacMoR5xwbimXHqBJnAC20s/dZbO2XHh/MN4J0scd/eXwLnioGLyoj+8z2ebnQJ8jogMiboyu47SR08MPLDU5L11CQWQvJN8dE2ox1B7T3C7rrA0SdNmdRZZjvT3QVt/2E19OIyxKvfINkd7NpQ3yiUJd2AceK6gkcRXrKOQKzymsvhPRywPvYbAI8y0IFWVSt9WOtnnYvOkirx6/vbahJtd2zY3AHlLLKlM1p1XbsrkDkzhveB5Ms/nWo7f/GHyA1XSuBEW8WjOOCwzDj9WnE5dTLx9NrOXQyfw4x47JETFNEmUXaXQth3M/YP5UW+sN5wHTqkI8R/uTgZqB76VG9Rx3Udr9QaxM1l9vIKF4Kp9oL0dXM3aQtJtyRmgEQoUSRisdjRne/IJx7UA4ooyLrI8CHjGfPjvj6s48ll+pyg4dpaBvJ0GVkBmqKKAsLWbfCwtXRfEQWaRFSK2y1kIwV3AHZMcAenqRAIV4LFCqkRRtQO0KZGewdOHgUr8/VcWDXGqqqCXEl2jqStrX3VfhpXcIQcouqKCybx0k3dZJ1Jkqe1h5XS/yirrPL4pt5naklgxcCuzlNO3BLpfYkG4G2Ga8SiZFUALDlNFqLSmgHDqCqLtEqekifPvf/esfnulCZlogQoxJlpTDJ7BCw+kxsZa9QO3azDK+02ufbhakQaKroQmpEvWvURHaP25wh4zsQgE4Xna1SBEDr4QMrnwRA4zlcOc3aXGrSP4XPrpQ9vC7S8vorqbMVQNqz/ETvwnqbn6wj9PtoAKNW9AS03BZmQggFfRS+xLjJlwFWJZYdbxYrFl7XWndYv1Pma9fZeRa2uw8FvpcYe5MbPx/PmEvAWYPvgqufcG4NVKS9MfdX6EjvC57vz81Xx37usBaPydREuuMxaSKw2mKTFkJ2dM0IDW0X14WC226+2r0kLXDtM5khmY3ByoSoxY31lAefsNeWz8HPjRQbqaBAkJLCrqEqO/Fox5k6zBT0+8m16XxBh9KuwaK+KuZ027mCU5KC7fnhDAB4WEZ8cL7Fw9Lj9XEHALjZTbgbJowhtftsBtp1Sdlj6BKiFmCeZDNRmRA1bNKN3O6vx7n7xH0FoBHfgbXtWSDQuCM0JViu8u/mmbMZY7y5ttSp3Nypo3FybbJ9M/IeXts2LL4rrlLL4PEZ8HNAOu9QDhVBUUpp50igobzh+nI1CAHUJc0fckpK1PasIakN8YQWJ4ngZ4gyya11lVtICbvy2uzl7zIAtZc3b4/N8n92AJND6oQcXJkwTx34HBBuFzy5ueDpcIF3FZccNWdK7uVSCXQK4FxBhxnvHh4l5uCmx4tpj5enHY7HAfkYVWkDIe0OpW208uKlLa1Ishkf9kMWntm5A2fSqhTg5FCTl88dgLxzCBeH8OqCfi4o/R5p71SV5DAlB+8YN2HGFzpxIrKIB1OIhT6jPGGkISDPDv7s4BatR5JwgZiNdCTXm1XkxR0QhoziPIoZt22vMwvhV+ICVAUWTWm0XldArlfpxQSv9hXcOaROWsilc22u8erDYhvHVDwSfFOiMkuWlxsYpSuqMnKNK+Ja/1Dmd0FwVoTdMtMcScL6tmjpXFkVmbphJUWCGetGiSBhwcsSJDF+WSXQtcj71/TZy47PdaGS5oAaPWJE281VJizsEUDr4kkiy2wthzf8VrYL6bYg2S6ibfEqoik3OMwWcJP5bvvpjtZ8n+2+kkjUDaZvB4BIvEqctRoFS5/bCpXmbmiv7xi0KQgqY1W6LEHIsltom7cw+icn0HUQG3qz8i+W4pHyxtPCoPZGzCpthx6ofOKcru8BvQbXVfVVIah/R18Qd6Ut9ttdRKoegSoy1VYcjiHJgulWVrmpVVJY0YN54+PhiHHRG2ctZPQz6fXwJC2BBUBdPNjXBtWaJ4FzDJc9dv0i6dpqQ2w284uiIm+ugdtxYkWKuPmiKV+s2O5cwehTQ1LMCA8APLh5LRV2SBu0ZK4BcxUXYeOwGOKVqxhWdUqAtSLy7f6xhQ4+GS5wYNx2F2R2iK7iRhU1jYOEVXpuxN7OlxZlMYaE235qnkMPapkfXMUTf2lmfnPwbZOxJWOvsQ0OlxyvvHuCLyCNKTB+kO38luxBOn63vDAKG+cjvb5Qd8+rPwZlewYqg87aIu4YvGDjz0EoAMpQ4S+uoTTWtmUHierQVi4HQUj8RA3lAKj5qrhZuDCCzsh4YBIuBOm8YLJa4UVQ47ukvdj2UyLE174VPpTQAgMtpDFzwLI4LH0BkoM/OdQ9teLTkfDnDr0ogogYUw746OUtyjng/Njjf09v43Y/4bvuXuJ3PP0WLrcdXsw7fHw5KMfMo1el2i4u6HzBy8sOD1PfCPzTFMHViWcRsWwKkmixSZGsMhach4DlzsHPDvGxx+FbEd19gVsY/VLU0TZgufN4eDbg8jTirXjEeejwkAbhLek92fcZ6DN4v2BZPNKxk+ur6BO/iUSzFHpcCewkHZgZQFdRiDbqJGqZRqQk6LBw49lwEPTFDnZSbNYI1MVJ0dJL3lXtXTNti4og29jP5s5tiLIWDn1cEF3FlAOmFK54ccA1km//rhXYehPl6pBCRhfkfrdWvr2/2Txs09ttI5arw8l3mImRw6pelDekT24EvoPjc12oMBOyWqZ7XzFnIcRaD9yBceQenSvIwWHvF4w+oXrCVET4/+ZuP1CV/k8BFr42m2oeD5sCh4jhNpPmm7JcIhaDWVqzhiRXqFyRAuXiiaFXFVxQmdTb11p7lM1NcdMKArSaTWLR3OBsnQ0axfiN7yy9bVaHW25F0ZYbkIu7sqxvBZkurEHVVVXPqZE77ZzYeXlT6rxtARmaYjtqQyKs7RZdQaoe0UkbxMiXVjjaa9Rqn0l27oNPSH5FcbztQIyXpP+3lsysslpRAzlU/Sy8m3HmAVw1dM7UAI4RYmlhlAKRysIkiinCw9S333niFvlgxOe5hPYdQGhtn63fz+gTRrc07xI7HFX4TQmU2LfixM5xxVoAGkcll9De4yZOiFTxOo1Yikdlh99+8wHmGtG7hMQe73YPOI8dfvnyFA/LiOAKXkx73XVJoTN4CREEgFPu8ZAGvLgI+nIbRU1kirqlBgQn9yQAPCxDaw0ZwumuCvF1bBXtwW99V7wDSl3vTTMjNO8bS0InggZHyvVrhfTmvlpvDtLKlTQKVna9gBStbsZqtQ6AO5adIwBz2jFPjrrNvQkMdKyeIUJkJQZylHYHzfIzQ1hrkPet0cNlca2V14EaoqE55ea7Atpl0IsO/SsHP+G67VsBb4tolSC+0olc2y2EdIp4nPuWED/GhOfDCW8PRzyLJ1Qm/L/7r+C/fPgc6aHHcgr4+Nih1LX9d0p9K1KiLzj0M572Z2T2OKUOr04jzi93K2mZhdB/XDzCkFAn8ZsR8zioP0nC467HconiDHv2yKPH7kNCPDLCxMBcESZG99rh+NEO/2v/bjNB/OL4IO1Gf9PWCUA5HzvGZRcbCgrIGMkpoMwezOqwqyGVVKS9Ynb5PIiakrKgBy0pWocOMRr/prjN9dAiVeTYggaaW7EMZPVo4mv7erNJ8E4MLu0QZDFgIUkQ37rQ2nO3RwP8CLBBbFyXqUbMyToWYt1vLfCk627Q9r/TzWlU7tkQMtKoFAnd4No9x7+G+vXXOz7XhYrzRRwQlag457UVMlPAxUcEX9D7gl31cN21ydg1wXOjVgAwUQTyColtSbNhi2pgHSy2IOfNJNrQCcInZLtW8BjXBZDeX83SH229yyj9xWu570b1oP+3z3qVFcO2Z5HDPjMRYHLN9iLbc+uuVTrXcLzuYu01FRKU81faLtse8GkFivzbteeaA6kRdpsviiIRFk9gf/dNtbWSTzPL5BHfyBpyJDdak+w6IZtZ8bQlw1YmnKdOFodIbYfehYIv3jziMk54cdwhH3twJVViSRAYiDFzQMoeIZR2czuSSHdHQk7rQ27tKVtQZ20ftdagnrygIY3mAutIFGGVJNVaziEjuoSepFhM5K+QPeOogNBI3DJOpXiTxzlUYvRO4iEeco//bv8a37//efxKeo7XZYcn/oxIBc/CCb88P0OuYuS2PXejT7gNE3qXr4i+mV1zjgbQWkz2HQ9+xgu/F8O5DZl9O34W9Tayn115FwFX95QjxhlCws60pmTLtcwAgppxMVCcZNBUXBHZ1y2wFvJmeW4yy8AgQ70JoNmt7VRVQYCxusIyrXwwvber7tgdy/1Oet+vfAduiAgHCIeDSTgwdms7oBwqakcIR1ksXWCUJxl5iQgnak64eUCTRrdd/yO17B1AyKn3pxFDl4Sf5HvcxwEvpj3uugmHOKOwqFBQCW5xwOLwarnDT350I+cji3cLe0b3bMLtMOOum5Cqx+tpRFrEhM1N8nnhFB1yEsFhmWMoBJ48Zt8pv0EzaRTJygfGhQnzUykOwlkKM78Aw/se93yHn0gBX3n6Gt/75H3chgsGLz5AaTOemAleeWs2zy/Z48SEmlf/GiE9yzm/mjPfGDfsqaHhtYPIo2mLgul1WETCboWNn4Vjg8BAVxG6jL7PLSesVofqV1mzZWJZEK8V8FulT/uIGzRj625uc8423NNSnYWSIO8b1T3alI0AUOvaAgd0nVCUZdCCZfYBlxRApErLNzbX38nxuS5U9rsFGFZZa1biJaCLaSgYumsHWeSu7VCl9ybOm1v7fQe+MtICwmomB1ypjd4kC9ozWivDFngnjrmtWHnjuVZolEItSZk9gFhb5oYNOvPsIFa3Py9KlzXe3rUbhty130qDszeH8F+uUSD7LsyEpPCifRdBVNbni6rEwdGq/HkzUmBb9FjbxxCOsikaDEo0ns2UA4YNudIW+a1KqBUm1gpQNMek41ZY2mFqESsojeVun1hUAQHzhiQWgyA4fcjY9bI6daHgZpixFI8Xrw+oxcO53OTxjtDQPQBtZ9/ODxMK61iBFKyeGHDC6DOkKmoIpKNVguxJDAqLtn/eJCdHCS1ZW5j6b/FTqQhEcCEpekKYN+M/UMXDMuIb/hl2/itI7JFqQKSCd8M9/ofxl/AsHPFBusPoD3jIg/jrlIhT7nEpot4xo7fb7oJcPaYSWrvKEE+5btKqOsQZD2m4KlLeHD/yd21WATaWTGVk40CM54q0QDfFunniAFuemKJ/LfcAuDLVIgCRwSGvcuHsGl/CJRHbUIGYMzKBwdeLWaVmzc66zkLbOvLczVywIdLbz60FVHpWO3pxTKUkPJR0C9SxijJOw+TibkG6c+hfBNAsNZSznfrmFBsJl1RZ4y+E6bFH3RPyov4ZhfCRY7i+4O72LNwEhniUeHElDY8elL0iNetnT6cdfunU4fXzEc/2Z1Qm7HczHplQTlEKvEKtADSTNLZMoeRQzgFz/f+Q9y+x1iXZVTA6ZkSstfc+53yPzKzKqrJ/Hsa+ki1huAh8ASEhwJYfmIaxafiKK14SSMhGAiRAuGeBcAMaF2jgHnIDd2jQQAgjJGQjQQmBJcS9PH9bCPyoR1Zmfq9z9t5rRcS8jTlnxIy198mq/K+wSNWSvu+csx/rEStWxIgxxxxTWCw6Gdus2g4FdahAOhGS2uvvPgTCEnF+8wT/7Z0DfvVTT/H0cGoV1/fziptpxYcPB7y537cq6URSPiNEac8mgFZx75Ai3Bqx95eeqgsUDeXxhKEUACB9JZGEiswRlzTtt2UZAaoFcRW49bhS76yfQnTjJ4Cu5WpZRcIeE6Ap0nXw9mqABUBVSwVz1rVEjgCgpgDmAqujZrqZNpbn1MJAFl6PKiOogYa55mvdPtFA5fnhiLITxfNZfUtqieAKpFkKMX3q5gFP5lPzdLDKspMi0V3IWDngdL5t2pU5Zomlh4IpGvCJbTXvUyeBzuJEByZsaytAQPUVLj1XmRrb11pEQY1VY+VR4rNR3QZti0E9EFwBtyUD2aUNk67iKGhstCHp3knMYMyHlCztrWW1uGtp8X393Xe3YHWAXJqsgQ9LSbY0WdNCWBtYaGcXM4jiqD8I4gDMgVpml5+cksr0ewjK6j5Jpk9WgakxGHIvOpthoufzmsRvI0o8eD0nWQFpeGdZE778+k76R8p4cjjj2U7i+Pd5xpv9DqfjjJQqnt2IstEzQ5UJp1UqBO80Dm/X0IAbix5mDgW30xk3WvwvoDMFBQGrZi6UKELayBWr5qutm0ye7Ra0lK09BwGTOi8niXFTD6H90v1beO90h7fmIz6ze4VIFe+hooBwqhPWllbez/9BawXZvU9UWmbQ3p2HFE4s7ZwyS3XnOXRQumXhtnoV65PFtZ/37plTxjSlZrzoM7W2q81A3EI47bkwAzA1qwqz1KipSwTUiCzfSN2eVqRPV9XEsgKvCfIcasqwFcrjFa2SMGDfgbIqcBOXZsXsIGZlN1XSadVVNS5AXBUQcJDvnAn5ISE+K4jPFhw/E7D/SsD0Sor+VWUErNaN1RQiBlg1FnQfsYYJfNaxKPVw13lNmNMZT25P4JuzZAK+2qO+mBDVYyYscm5hBaY3AfnDGS+Pz7B+TnRcViTvPlSsvEO4j9LeC6HcAHQomO4WMAPrS3kfryOSmqwBwhCVfUV9omnq54A6E/KN1D26+SJjfgXML4HlxYTji2d48+y2ZdbkJycVuSuDcI6iKyIAh6zjroyxJWj/qDIuXwUqVfUrUVFNRWeKtBYQ7aoaeYYeDlK3Xas1JI63qlEpEcziAZUcALGMRG+ASalgjnUY25ipsahi8kkdKOlCyo/jkXpmaS6xZafas9OSRvRvCbnyMC8Ks0OYYm0E4qRgZkoFU17wcbdPNFC5mxaUWS6hVEJWxz9mYJ4zDlPGs90Rz6YTplBwUCfaY5lxrkkoeQ6tTtCpyOrrpMUIffw7cAcV3AbQHvOT+Hho4sHU6DlZWc8pN6+RypJGmWvA6mor1Co0Y6+AKZ4hSVPTADRgQjoRGOWNpAg6atXfIMyJMM7CpBBB20ceqpairPsFccvNB0QVTrEDE6MKvZAY6GE0DxQsrNPfr6hs4KRXRy6awlpqQErKfISKnYKexqBYKESZAvvd2ArTVVhBw6IAqNSA1dpKJzVjEQw4+pXHbnfGNzx9hS8HASWv7/eoS0RexQF1XRJyijjsFpxTarqa3bSqJX6fXG3AWGvAmmNnu9D9bhI6WLF2jKHiJq0NRJ9rQgUhkbAhUUM1BaFl9hRSsMtdi2MalYjaAEUkFoCiID0Qo+adVD6mKnWSQJhDxv26w33d4a35iHMVm/3XZY8vrM+bT4ttq5aYsGfJQIXVbLoL4ubcmciA3ALnoQHcm7RcZIUZqDUQFVRHFhxrY47BPnsvkqzituDN4v3GXLaVq7o2k/qewP3jTCgce7FQCwPspEaOhTHAJoDV1Tfp5ydG3QPh1MMdgYCa1MODIS6sCU3sahMXKmTRMouXRn0TJcK0Y2SSTKB0ryZ0tvJPEeUm4u7JCa8/HXCuOwC9gGDVmkFhhXiRoLMAHMUrpoYkq/vICE8KYirIi6SknlPCzW7B3bQghoovpif4cHkqjIqef53kGGUHLG9V8E0emOEUKw77FeurHdKD+LxQAc5vE+qh4K0nD3i+P+IXyrvAmyjXuEjYS2rziGg47LNUi56lZhcvAVQDTu9oarAa76UjEEqSqtT7inyIOKQV3/zWV/DFecGHDweczhPyGrE/SEmByiSajByxpCRV7G3iVxLO6qkJBS1AhVnStwEFgmoEx2sQncuRmt+MATpDDPEMzK8IOUs20ptjRDwUTHPGrMaVMTASOjsMoAGGtQScSnfxtvo9ABpgt+fAxinbTKZgAKQ4QG/zlIVP7Xg23lmxWPvcwoQYQltg7pOYQy7l6wyo7NOKVSf/pDnmZioTiKUmzbrDbVrwNBxxl84ywGo9n6qT5LmkVgnYpx2bkpqBJgqqbtKzzZgGC/WQm3CAywJraw2tMNRFTFHDNlQJPHWAYPsz4zgfiw8k4kxOpYmWACgF3dkUoLM/RAym3kl9HSAALSYKoOXPe/M6mwQs40PqtpRWpde4gDbZcOrhGNAAUmyVey69O1ql5mSi0bZqD0NowPaZWVKa1xqHFbYPARnjdVzUGydKTZgYKu72lj5c8Y03LxFDxcM6S8oeTUhTwfPbI47ThDf3e5xowmFeO0tDwG4vV/1wnlvq3qRhqxQrDrulDQR+NW+rFM/SAcZKSVgyc8AcMiYimVlIAN8ZCQWhFSL02y5kaWcEDa/Iz8amkISV5pAbeLvPUixR0qxP+PB8g0NcUSC1gSKqs+gPmxIIobFDJgLOVQDkQ54v9FVZ76UB2ajPG9Tvpd1DPYZZfgcyE0btU3o+ljq5fS59KNHs9quJId3qEu25gPhkwDQp8izhHMA7pUQs5DEJyuBCWvdGrddncWOtaxAvjiBAo6YApoSwCAMTjTlR4aXiTmFjLEyjrE6cKkIsyIcEqY4nixCqMiHHs7AlHIGwEtZTQnxWcbg748iE+ycRQW3dAQFG80tlKMwdN2qGUgboPrTJN6cJZReAU0SlCS/PCcfDhON+wt1uQYoV6W5FZgAUW0gsREI5MMrbGTdPT9gpQ2FGiOuaQKu64y6dXSjngA9e3uK4TEhTRv2GijWL07Z5grBF13R8nG5W1H3G8mqHOhGW552lAISlmO9Fi5NvCOebGfd5xqf3b3DaHft4scoEX2oQjeOkgL6SWBZ4638bM6vZShgLV1H3aLWD6BiEqdJChuHcGSfKAFUFtIGasDY9EPJ9RL4NyLcRpycBuNMxXxc6s1swMtAW0oPxGxOs7ph/JuwZ0S7W5rWmqwQE9DKa/wwDLWO1KGPUFlixIE2djT/lhPMq3i6TtiMnAvOloeVX2z7RQOXF6YAQp2E1yvAxvIBX5z0CMe7z3DInJs0GOdfUijSdi4QKPCABumiv0Wtu/36yKRr/yzUo2pTPGhXtU28NpGQVR7UUsRJg+fq2kgsaSzSQYj4dLaziOtWglyHutS7sJQU99jtpTN5MfzxQsc/YeXtwZkZqxqykIKlrk04kvqgg0MW2WybFhzzsp+3Xi53lPowTsYWPlhKGffrzBqDtrZ4EQdKcD/MqNTRWuef7KWOXZLX/8rzXonwFJWb16ejmYTSL6+m6ipfAzbTiyXzGWkMLEwIY0qnPOUkYQtvLhLNeV/FkOuNUUmMIMgcEroODcqIAuHZYOSCw2FlnyGcmlxq+owUrRbxRS1NhYtBAyrkm5Bol3GTMlDIjlQOezkc85HnQGxlIyRwHMaJk4xTcUDdetCytpUYsDoTu1XPFAxTPmm3vs+em7Xi5xnbPzQJgLVK+wj7ujfX8M9tWiKV7pxABpBVhxdODwazuX6rhYtO/BRaGg7hNmOyADe1EV5ZSQSaFkKQ6sLmCKaOcg9jXnzTrh4UloFVDCJNOXEr6hFNACQl1R8CzFeUJAW8S4pvQskSMmWl1gc4Bp2XClArSfkWJFXUXxdp8CYivxSSOGc17xaROrZuxTJp4EcGTghwGyiHgfBuRbyWz6m5/xrtvv8KL3QEPuAFeJWEJSEATPUSsNxG3T+4RQ8UXXjzF8dUedB8xvQzQgt4oOyW4mLC+nrG+njE9WfDpt15jjmVIn31YJhzPM/IqmToxVsxTxTonUE6YXhPmV9pvJgVBi7j8hpWwhBn/fX5HHLBLRC5R3KqPCedF9nmzXzAlmWRz1erHDBmrgcbustXg0f6CBDDEvdZCgVVT1KvWkALQKmSDqYXijF0TIz+pys1R7v+pEM7zhJBkXkiptrIVfkuxtgWmD3XaT1I2iNDZk77o6uO+/ER7xmy+srB2IEk0MPHs7bTg6XRCIMZ7xzu8l29xPk0oU09Iofz1BlTOB0xpxlqkpLwZ+QQSh1JzHH1xOuAFDphiwe204CYtok3Q+j5+FW4TsqFSc+2bdH/msdFuJKQTAl1AC3Rhk22lhsFds+3DdaBiJbVFRgAK4la7dQ207Bc/oVsadeuEQBOneVFW2zyqbq63PAzk9h12v5tAtFmhqzDZUgBta7qFjwApXlzqwx5W1M6XMbD29Zs358u1C+Hss2vVukvKkkXufiyrVSRlKcd+1tRrZonNvn14GBixFCvulxmVgcO8oqpHx3GdpCaUMidWqdkKjAFo98ZCT9afDmltviAmMC0sGVCvlv3AKLUBRyfzc0mNcalBjAwnFBQKCGbkRn1SB0TrMinTEVFx5BnHMjWgWZman8qvvrlDoIq3dw+ikVEmJWrlvcBdc5SUmWlZVK4vmF+LAZNF/W8OUTw6zL5f+mlnkfyWNK+zMTEaGiomIG9Zc71wpBSz7DS9laqwUgsUKjgnEXFGFTzWCCv4RlPV5TpLZlfUUIPG+A2k2HnTVAGrxRVdKQViYO7PBRHAocDqyyEE1KzhJw05pQdCyIQauFVgjkcCWEBGfLbg9uaMV3wDPk+oRSbikIVZActiJ5wI5+MEHICyRtHWVEI4ZGF2HuYWnmG9Vg+ObGMl8Rhd9MlnAtWIeg64B/D27QN+45MP8Pp2h/9v+RyW5QZ4iI0tivcB637G69sZt7OEScOrhOllQHqAq8rMyM8Kwt2Kac7NSh7AwJRmZaXXNYqVOwHrGjEfJAwEllDP4SvK8N5Qy7ShyuAgK8Hjbo9fDU8xTVK5OARhy1Bl4ZhrwJN0xtv7B+SbgPu7GW/OO9yfZiznSRgzy9KUh0yAbaptdrWyHwzJDsw5AKeAeAwCTDcbVekDdETXsKwAH9VxdqkoiVESI6t+0VvqW0bQrIViu++KMvk5dtakjZdomYZlM84GAhC6+7bRkKZhPK0JlMXTJRDjbjrjSTph2cWmP7Sxfs0RdZ3wcbdPNFDJJSAvYv6Us6TLpZgbne8N2QAg1CB1R9zqziY4oIOUpIX2wsyDFsOoNdOVGDAx8VEgvsiIYZ0wlyxCSksnu6ClK0lJcuhqalcxH9ZW78HCAyYkNMDinUyL0Y9Az/CBW5C647XPXKEB/ftWUNHHLo0psknP/lk4yuSQj4EUD+g8+CBit9IeVwh+Mx2KAUzvzGj7tIfSrifn0EIE92TGYD3zQ+K5MkqLD+sNYhBfG3IP83mdcLc/43YvHP1xTcj1BrfzgptpHQaGN8uusWiy0OoFwEwlb5P7qfSH18Jg54LB8dUy0+YgOpK1RqFeOWCChNusCCf09wjRYQEQDyGd6DPknsg9ikOb30bRHYjA9dgqrAbmFnaxY6w1yuJA9UmRGKPhXsUuQEXCGUGvs1UxpzFraTtIAj2Lq/eJrncyUaG8D1T0Ip9Vc39D6FYCBC2SFyvW+1lSaKkKqC9OZ0A2YwNhJ9q3SuL0ace1VQsXCe2ESZ4Nhooq9bm0mZ8AmDU/pSp1hObajolCqCk0HQkT2iq7gQkA5Zhwb319L6tzjtyyjojRLNzLMSFPRSbKyBKGAjDfrFieByBETK9D+24J3IW2QGN2m1ZGT5UqQItoRtY44f3bGzyZz9jHFc/vjvjyaUI5SnZOXLRQ4Trhxau38eHMCEdJI04PUIt5+ZfvKuLTFfvDgsMs1a8tjG/A01KHl0U8TnAWgLmco+gxKqE8qbiPAadPaTspcyEshYRe0gmYXhGWaY/yZAXdLpjnrItGYeaWJSHcMj69f4On6YhznfBiPeBX7p/hK29u8XC/E2M667eVpfK2gj552BmFFRikirjLKLuIso/izVNEs0RZAKoxMxy1zRl9ECfuYChYKrHUpiKShe2szt3m1RQV4LesuDqOlQEddABwIAYNzEQIYMklDM+opTGXErCQlLM5pBXPpiNu0wLs5e9jnqQkypoGJ++vdftEAxVb7beic0pDbfUbCX1CXFypeT8k2iAYiTFp6MY0GL5myQKNA9rAbpM7OoWWzLND7dnNQRDoIkqh42SVVquJmoRCplSRdhl3Nyfsp9yAgc+q8WmuVufBG/w0UFJDO0fzkmBmiAuhAyMWbSIRAHqtjVGBRJ1dmlyK96T0PaCW5U634LdtRpQHIx7dezZFdERo12qrKQvV+Vo8pvcB0Ap9Ecnq1gafbC6NCipTovYZIGBVseAbZVemqeBW6/HEJMXNlhxxY1kLecbChGe7inNJIAAH9XW5X8QES64JyLqqNwdiqwcEoIFnT6kCAqRD5M6saK+dQ25tJJlkqtRX8BIhg9TKsd0bY0OyTu4tdENoKd8Ght7aPbSw5USlfXe7BXWatcwkCwGaHsbSqpOep71nm6WWR5IwUdQZMQEAdY2K9IW+oPDhIBNgC3gIyK2ej6380NhP+3wMFfPdggWzgJRVZ+aJBWkXozx6/7A6XKyW4Fbbx2j8YjVMGChRJqWWQRQgwnRbGBABSRdHytRUlsXKchMlK+RMmjyiOpLADVCVcxSwc5NROYFUd1L2Yv6WNRMGlZDPCYe7M2i/4n69ARfCdFNQb1VTUgnTvbAxHAgVwuQ0kKK6ESaoUFeBjAKWcA54/f4t/tuScLNfEAPjcHvGw9Ok6crqcXJPSPdmIw/V4qFPygSgAjUTHl7tcV8OLU2XDhlpl1udrXWNYva5BNCiXiwLkCuAuYLuVuA5gyapSA5lUJdzBE4R6WUEB0IohOllRD0G3N9MgDJpFBg1y+Lvi/QE+7TiN9xV7ELG2/N9Yx+/HO7wmg4oS4DVByI9p4Gd0s5X7grC3SJsUSrgKloiPks7CRum3Sj07xozRZXAGjriAnALd0u3jbGiRs/gsT53XS5gxm3bUP/wnTB6fgGaganDpx93W0FfZZlfnA4AoMzKGZ/dv0LmiC+f7vCV4x2WN5fjyFfbPtFAZZcydodTUz5beMWGKN/QVQHKeZV6LUYFN5bAkKOBGwUFMajjKlHzYJDP90J4rCv4rYbEpx5bKMoYCa/5sFoIrBTytMvY76Sir13bLuZenbit8AnHPLWskq0pm3xYMoR6Ro/VAuKBfTG32ba5sJV9BujpwnMo2GsRO/+9qqGLa3qDa5vfbxfQmmdIGPZjYR5fENKzJ5Zxk6IavFmqtoKxAhUWszzglQPKKp4J804U9euSkJeE7L53mFacdBVgFtEPi7jXFhbjtRikmqv1LehrzFGK5ZUAIA6FFLMDKmvpeg+758Yu7ePahKST1wJtJn0BlaWBlIiKCgFzlukDrs2Mz8zdDKwYu3ICBp8Ty5qxfr0FoO34EMCUNI3ER6INSKXQ74t9x7ZdyEBNEsd3wNdnAQEGXvu9NRGuf97svWsZCyBhTd9+eo+XsWI5T8KUFJKQEKiBDygb0wywai9U1wYa24z+ZwAZ/TqritrngjhJymuAYpUkiywLT5YSUCbJrqlJQzUsmSKUCTyRmFxOBWlWYSoTKCfQggZS0vNFBPHHBD4mnCLj5vaMcMjgQjg+zJKOm0n9WYBwlrRiqoQCBk9oNY5sxjWWpya19g/6mUo4389YHmYRu0YG5or8jFD2wryE0idhUl+ZMss/AT9afPAcQeeAdB9EYFsJ53cI9Z2KGLWMRqxYAmNRpokjI+4z9mo1fzOvrYr2cU2tHzykGUuYkAOj3AWEY8D8ihDfFx0IRw0/3VURv66Ecz7gl+JzMBPe2d/j+XzEk+nkMhwJxzipWadVLQ6NgTKPFWIAK2F9mJBVdEpB+get1Ao1Bi2AWGNfG4SVXH8LPa2dpN04ACUTTkXYjXXOrWyBheltPJk0y9CDDZ8U0Gzx3bgeSF1ndR7yJp1nXbwZYDnnhPePN1hLxHwjZpVP4msUlkLAc/o6C/3cTCtmXRELVR4191s9TWo30LKCeqtqCKqJVG21GUSJZgADULtt/d1cUy3GLcLITkenSM3gBoCu7HpYyRCqCX59+KMVF4yMNGfc7Bfc7hbcauofYLVYxrDIUlILC3TBlFF3aPsGZMKNmq2TeRQYejbFBndfRdpejwpS9lGK1+3UbyZQVfo9NPbJ/7P9AGihKg9QtkUEG5vA3fEWkBo2x3XCojbXJvKyWHVQkyITBqfUxXchMOadFDzLOQJFJ68iK3AQ4/YgKZg1J3AOoLn7BWTL0uLuzNhqZqSCY55wUN8TH9Kxe2GTpKSul5Y1ZbVvzHTONquUbMUIJwdUkmqCIipQJwUrEQdahtIFRZV+UwN+I0DYxYzXmuXTRbsdoGa9n8cyoWpfl1BSHCovF8fKRANIIsaA91jJgOqa8gBQfOhHPFVSq7EUiQW0MJA5NobT/HfY9TFLj+x9loY+3f1UxMRwv8/yeiZhKiLEN6dK3RbWyZaAbn6lOrKmLQgYLcEZzQ4ejmGhKiZshUwgz829eIpVqtGW7gZKkUG3GXUR8WZYooQHVvXpMAxUCWEqqE+AOgdxz9VneZoLlkrAqwn84Yw3S0SYiqTy3oszLGUxoMt3wihKmqyCwAKUA4NvKurOYkFuxT+zMB2T9JmyBvBDAkpCnapof24yeBa37XAMiAtpwoCK+al7zQDKsFilYkBFvuJB8vTuiHfv3uBuEu3XQ57x3v0d7k8zDrsFn7qRoO25JOzTirvpjDfrDkWfxUnH0pylkCAXRijA9Bo4vFeRD5INBBAoB3dOEUe+w//5ZodffXrCp+7u8c7+Hs+mEz59eIPMAa+nnVgQ1IByE1rF97oGSUm28B4AaCYYRxYHWr1ew4Nt7UEQkzfuRSWpanhPK09bSJATgydh5M5rxDonnKeC807qLO1SbkyvdsmBESHiYRE+KYPvBbY7Hff3URynbeyXiuwzHvKMY55ajaGv5Bsc84QPzrftXjysM3x9uq91+0QDlUiSFbHm2ISTQFctrzVgYRJvCLcCs2JyRLKC8unD21VZpj7QWizcBtApOGM0Nwk0UymdTD2NZgClVGqTHldNSQ6MGMXS/XZamoeIaQR8nD6AUUNBDKNHhE9Bs3MxZiBSp55tELc26ewTFLDpe2wmP7UVp9qndQAp0j4ycaxu9dtM3TgMbTpk86ALc20/lUehbFvZa1Vlq+BsupSqwjdmRi0BD2tCmjJ2cxa1fgmoWsAxECOl2iaevIjIMCPhQW9h2mVgBzy7O+EwieDVHmhfsdoE14CEeYxJOeXUNEnGutl7/sG3CfUQc2MjLB1ZAEoe2tlASkRtYMDYCzPSm0iqnK4cXTacTiToAmdvP2/921KMgYpTntrrc0jIcdXBvjRQKsCFsdWVFM1AEvaJ2jHXKj4wh9jDRR4YrSx6puLOw7aW7aMgpdXx4e5svBWC92fC+hs1gLksEVMqUvzumERAaavUVEVsmUR3AkjIpy6xhxqKUfvX6fNhM/o+B/ARWFkMKUMQP5hVAXBeY9O3gIEQGbQrUuywEOJRWIbMQE0BGUA9iWtsvMvguaAeRSBcSsC8y8B+xfkYEV9H1JoEcEwV4RgRTsKm1JuK+GTFeheAcwQthHgKCGeIBupuRZ2FfUEVwBFWgrqnN5YqJELZ1S4uZRJmNlUgSJFFmOtugHqhCBABQcI3AGgNJuWRrKQAQMfFu+ncBN8yaa74cHcjzxMIL097vHh9aA6saSq42Z9xO6+DvQOWgOllxPyCML9k7F8UnBCRD2bFT83/JACglwH8eoc39wnH5zOOzyfMz97Hk+mEd/b3mEIZwtHM4r9yWibpY6bvKaGB4VbVPjF4Kih3BUX7l2RXdfTGQdrMskJJCx9KRWfJZOIKKWS5iNZpmSPyErHsMpa5V4kX9s7KrQSdC9UGw+ZJYCgOagsmK+dx0Lp5+7BKWYR4gxe6GDrl1ES7wmhNeDXtW/g1Ujd1/Fq3TzRQkRj8GGKZk1bfrGInnzfUlsWaY6hNdDToKwx06ODX/EIcIt+egyF2oIOU8sigKQyArcjdZ1hLYdfu/rfXYm1G21VQG+Bt83H7DkLQBL42qZr/ibwmWQ9bjYh3GDQFuH1ujgU3mjF1iF3g6c9jdaLZrWnXtXbzbMu1z5hY1t43kOK9ZxroMvttAHUNWGtqqdgpFszETRNiJQdqIqGPAdQlYnk9gybxnTDmwxis292Cl8e9sDHaj0IAahXg+3CeW6XkVSv11kpIqWI3rU6gJsXCzNWRmZCoNHblEFeca2pmbJa+C5irsuifvInZIS44ltGnBCyAoXBP5a6Mxn6ZT4kxFO0+glDVkwYAkoIHQMKPqL3PpVCQ0LMFrmVnBWJ1B+5hm6UmcaAltOWjD/FZaMcEsz7sA73vHqQYk+LFf9vq3G3fGr7Ja8Sb406cWE8B9cBoqchTRUgbsXuRiVZ8MZQJJWyEjhCGpVEPukwmdE1GDuAzsCpQXtfu/llW0b+Qngcr0xh3BYWBAiC9lmyRPMUWcqFF64MReshKmdV5zlgOBVXZEzpJlkoT7Gq2zzRnpAlYU0KNSaNYsoCq2bEpVQSfkk4ckQGsOUiF4yDnyhMaYEIFKEHA3xRaOKNGbuZyCAL4KAQJfSzUWRsSQAMmnJYJH55vWsbjk/mMRJLJ+WbZ4SsPB7x5vQd/sBNjOACnJwXpMwXPD1K52xhvWiU1fLoXliIfghi1BQttQdxkVU8jfieEsEaU4x5fOkfsU8Y3PZUwuLGfOSrLB8n8S7HiGGsryFctlAZl0rUvpVkM3UoJWJeEssTWfk3owtr/zmjC27CIrohYgBoXtMrMHAKqRA3bM9MX6mNqfgisWs/Ssku3If6dsvqTLqju8w6vscexTHj/fIsXpwPul0kWaaWLbDMxTpSawWaavs7Sk83cxk9x3qIeEFElG80eK2IoqCx6EQM1Ngn6VX/RicRnxdi7S44oIbROf5E2u/m7KaqVSTG/FcsYokAAqUhPT/2asNRvWQf8tfZqn5YSmRzT00MfncZLsbaBvbWb8/Qg7vF8A2g304K76dz0Ev1ag06cY8jno9rDv2amXxeTm05AfjJanL9NC0eRgq5dB2ZlDs3wKOeA3U5YNcvISbG040yTqPzXonTsOWKZJjCA95YnmOeMpzcn3M5LY+q4SnZESgXzXEVXUAKORaoClyJCauigAFjVXgXElZBLkvpBScIjucp9uU1nPCehsAuCZuTIte1CxkRiVrhybBWUJyqoQTJ6VvQ2MobEBK3nmhBVh2J+LVuhqv+9sKQhh1Cvfk6YxdJSpcHy3AR49kwKdloJy6yxe+lDddR4+PPZgJOWbeS+0OqYNNZGzfTaokE/ZwycCmFrFeHj+TTJSr5AJgVd2cOAPokYvT19TD0jI/TPtn8AWrXydpoM1L44Fs6dgCphgZpiB9mrtA0HAKmiQoTURIx0yCiRkeuEdCTEh4CyJ9BebP1hHi8KWFhZ43WVMCaeZLFuPwnoKIcK7GtjSayoZl01m2piFNaMpFOECV2hWSlUCWFVB1s93jYEZm3GrJNzFEdY239rK/t8FeO8oG9BARxVgE4BLz+8xf3DrjHL05xhlbCX0wS8npBeBUyvpMJxnYEzBeR3YgvLTqUOtwYAyh447gLKjlD2QJ2AumPo4ywYoUjGUFrFgwWY8N7TWzzfHTHHjFOZBqPQnTox27h6f55xOs5ScXuqmGZNuS7SH2OShXOYV+DQbQ3WNaFkyTari1Rx5mBsHnoGViFQVhE00CerCnAWFq6U0BaIBohjKk0ntZsydgpQpihGkMbqyuK0IGtldmPPlxrxkGe8WaRa9pKTzmvK0Lh5B5B5ZopfZ4zKuahDI3SFjj6Qdm1IvTS02Qy6tU2GNjmPx7F9eV+OWsVeeHU2wt43pU30PudcwwbGtjBDY9UVtVZwoW4jr+flNSlNzKhpv5bts+pK3kI7dq2S7TAKhlnRudegWAEpO5bXWBiyvkkLbtPSijj6ScQo+7x5/do2rpx1QnSsiZ2Dib1yESbANCJAD28xEwqAXZIy8oG4Ua+vTzscH3aolXBmQp3l4Smln+NQdCtJtlU9R+SzTB5cAo5ncfpdbpSWZyhd2tPEU6jd06FKNkjNBIoAI6AUrZ+hoUhjhELLCKrN2TcQ4y5pDL7MwIYYsPo6ucZWgdhCLdamK8cmqBXNRtee+NDclsUI1LPckorIbfPZZravAB7EvKsJCDUd2YeEzGwO6NoXyca7BLIGbqw/9f4vs7hn6i4svhWMDsZu+qy17B/9ndeAtCsoVpE41JaZYwsgvw/pfGhF6VhTeQdw4idrY1zsJ9AZGBaAgAxJha4QMW8ltVsP4MqolZt5HIWKdQngs1rbnyJwm0GHgjBV1DW0+kS1CKO8vt4hvI6gz54Qb1YsZS+MUGLs7s7Ia0J5PSGftbLfMoqEG4Nkf68iiq3aBhaGYELXljiNhXQuam3Dk63ENiDFA+XEwIQe3li0PMBxRo0T6swoE2OlWViGszjbpgdCOkrKMxVGvhGL+vNRDD1NC5emgryrKDeEZZXMn6LgxBgVdrb3KBBH1QlAlmYKK+H4eo8v3dxhFwse1qmxsBYi37kJ2fojqyYI0AwdV1G8MmEXu5B1ihVnYqwxYiFbWECfIzX6m13fUkZv0E1VAq8KTIoWNmQ0oJKmjMO84un+1BbFRNxAykFDvmuNOLMUHj2pk7v3xKp67bduDvQZQwSNDITaEz0+xvaJBioxiBeBHxDN9dNWWTZBVwbYZYrYID65GjpSpKkDDl+N1baWRcSyaq5Vb2zyZmc2ATFMoMvuX3s+HViZpgJOEN+UOO7L9AeNhajCphzzpEZ3Hcn7EIPMGTSwJReVk7mHt3zOvG0GUizkE8CDPb6vlTTqHC43vyr3hQctdmnUpPeosbCdhWGKaz+ZpMKQur2iZ08YzV8QwOdJhLLKtACQ9PEliP+Fgh/MpZl6hamgniPWhxlvIKnKct/Q7mMMjBik3DoRqx+LgCAxeuoriqpLoEACXA5TbuLkQ1xbaGciybgpQRgNs8EXJ+XUfFQKpChh2aIZdAfZlj3lRK0+hdw2E2oDFYE8I9IBrGlKzEl2u+UaUVuaQhn6weC9wN0Dxt7zYlpAwkqL2u8DXWxrgnbW++9T0gHpzyYsl3tF7X75jUjj+UzgWQy+pNicCW+BNpMaRV/d5GW7s5Thxqzo+w7YCHhxr0szjxuTCPftPSaACFx0AaYDvNjwi0dKOAsjE29X7HYr1pCw7qMCC50g5gJQFKbCQEIFzNAspoKSohQfVNBh7IdpRMx0jNW/o8y9+CKIe+VnBRw8V2WnuL/u26K53bnN/EK0HetcQYlAxyDCUbX5b3Vz1NSNVkI8E9KpW/BLqrMAAqoAPyR84eVTHOZVivulAtoX5FsCakA8E/KBUfcsjrAKuCw8BlLwtNfzsEt9iPjSe88QUy++R6G28fwwr1hzxMNpliKnDA2RQWz6s5pOFsLq+ie3ftv7bggMmBA6RqnEbOnMlYBMY9VtY7JcOzONlhzGOFqSBHAZtvWL47UtRkcvrECMoEUHbYFuWZz9WH0+/pp0XZvtEw1U9imjpoxzTiiAFI7SrB7zPojUDbj8ja8kkWSLazNTAyk28V3d1Ma5uA7gwxCWNgt0q3li88wQhoNsYi5JTMYgVHOKFTe7RU2+Sgcm6ILSbRaNfbeHavqpGlgxxmQAUHbu6PoW61y+U21BCmB1hiQ7w6zMt5OeVdBtgGPDtrT3tn/XXtjK2nVOBU92UiDsYZ2aGKzqhFJqwMvTvq2uTSMSAoOihmbW0B5sQOLkXHt8FtABIcogyL6d9DNsQMMYK+1zZs1/M68oqUiqntVkciskMwM08fbT3am17SGu2AUpRGjtvA8rIlecMF1MbMJskchqeQSyALp76+a11Q00vp9Yf881ND1Uq0Ts+ov4tIhTrAcYRe+xRw12/GvH6+L0bb+ILe3TC6xP6jPjdUu2efbEYvC8eV/eU3xh3YCkD2CqwCqAlXUSbeUndAXaC4XqTok76NDPWb0gqbHFDaz416FM5zbkBWjIyk8+6MxPDkn6JklacAMKmVDXgJICdvsV9DZLAU1SY7vbBccqpl6lkIImAi2SJhsPGfFQUDOBH5KkDa+EOgO8qwLcF0njtQmbpyLAygljoYxKyECNygoR2vV0Fgkd2BD6e7YpTpK054rCQDyJuJYjUG8L6KALhqLaoTA2KEex4s83EtYBA/cv9zjvJuz2a2NQ61zBQYGQreMqgVYgFtWrRE2fnhglMjCjgZewBOD9GSX2+k7QBe8aK85pkgXTKYLOsWWRFQs15n6vS2SUXcS6E2aLtC/b/iSLsYKZUUJFnYN6+UjmIs5SBymsJKIUQOo3Wfo4iWNymrpcwViVtYg43YSz8nwK63muftmqIdvYnad7CD+2lOUAbqEjSwLxC9jzZdf/qtvHBir/8l/+S/zNv/k38fM///P4whe+gH/0j/4RfuAHfqC9/yf+xJ/AT/3UTw3f+Z7v+R78zM/8TPv7gw8+wJ/7c38O//gf/2OEEPBDP/RD+Nt/+2/j7u7uY53LTVrASSi91cIHKhISoWOA9wORlS21rB8bwLrvhU5Y6GEXeb1rN1Cllo+3c+7pq3Gonhy0w1mKtG3MQsctLKlyXAnTnHGzW3E3iZJ9VtO47BggPxlZWKZlO9kKytNt1D0mpAJ0H8xtCw4Bm3W9XZfZ4z+fji4kNK7eezry+Lqduwcp3g3RhMt+68Jk0Rs0wKnnVjTdPLvPU5TrPa9JhLZaLRQAJs36uT/OWM8zWOuUgADaFRH/zQXzTjiidUmIqYfIjCa2WKvFkk0hX2vAoo7IvFtwM6/Yp4xd6uLRFhPW/Vm9nzkUVdGvmm4sIOUmLNiHLjY71Ul0JyR94JbGx7yyMCvgXiXYChBmN8hYVoQBg222T69MzC3EYqGo5mtjOpMaUTcrLdF5Sey6xn7++Uq/kE6Ioc8MPinVjhPa9095agJZY99sswWI/W6ZDP19NMGqAUwAWs9H6/qgts/wGhpTQkqTX4RwgIGdNAFsO8Ern2mCSM+8NGCDltUBRtd1AEAh8DGKwJX0WmwCgpzvGhJirJgm0UIVrZwbYxUAploI2hfJvHiVgHNAuQuYnp+xf5JxrzqtWATAMTGmw4oyB3CeW1ZOvJMqyOubWa5VM6NwjoCGn3hCD29BwYkalnWdD5qRmYGCoc2SmFMWSAFIJtknW5kREzUnoMxSJykAqFFAyvqkotxpNtcxIh8j8iEiznKvw20WRnUNQFC2RO9zG5o8QeaZMwWvpHodDrWlfgPSZ9bjJFliq4A/CpKRQ0VYoHjq/aomASp1FyU8NtUmULZ73tyN9RTIFlVTRVHWzLKLpI3pgkE34BP0oei6OfEBkzpduYXfc52vjtODDpQtg4+bgaO8Ltq7bfHSJf8apCff39/jt/7W34o/9af+FH7wB3/w6me+93u/F3//7//99vdutxve/6N/9I/iC1/4Av75P//nWNcVf/JP/kn8mT/zZ/DTP/3TH+tc7uIZJSVILndsBcnEkdRqtJTGMlRGC5OYwC7nKFVQSR4KCzWYw+wUxDCt3Rw34VtxQVvBA2i1gXwaqt/aalJX3DWLsI8nEXzukoQCklLn2w5hPz0lb5bhNqkDfRU5hdrSnA0wXGOLpmCZJ0rZUw8H2DlkjkP2hk1Q3lPDr+4NpGy3bejH2sWK9Hmd0art++q8d8JafR+qF0FnxXKWB9YGjOIGe1L7cJ462DCACADn2NuupT3XnoocNPZMytIxANJQhwl/JxKDOE97+uJ9h7Q2T5x5MHAT18t9WHEXT622DgA81BkTzCkraOVvGvqGr5AMjOyJ1AHqYcwhy8fu50a3ZbWHbABqx2HRwFiasi+P4AcjO8ZSYru39p5tGR3sb1ddPj0dQDOVssWE16Z44bjdN64dHMo97f2PgAYqaPPT+soATKqfudxGm5/t9c6ejKAEGFFMf80iZoMgtVI3kXMTPNQ3o02alVCXiCPvGusCFifmqt4vvITunKvzF2UAbyJW2qHcyqqcip+kCSFW7PYr3ryZmnfMNGc8uz3iKyy+HUmFoTkw6qJmXkmYKPNqGYqg23nrwpEaEOSehmtbqmAilNmxV4s1lvzjyCgHASz5Vr5fZmU59BzivXjE1Cmi7Bl4tuLJ8wecpoLldgbOwhpRFt0HB1FAE2MwVxtACgvTwnNFvM24uT01Q8jzOUkNIgtpAarvEdYpaqiqAyNCugdAEWUnIKveCntPlnGm+nMO/bi0L9gdVqRUsARGSQkmdgZf9qeSRX9HkDAV0KMKMvesLdv0Qb1RzDW76RZDaWODf+b9nFSZcCrdaM+PL0v9NQAq3/d934fv+77v+8jP7HY7fPazn7363n/+z/8ZP/MzP4N/+2//LX7H7/gdAIC/+3f/Lv7gH/yD+Ft/62/hG77hGy6+cz6fcT73leSrV6/a75Y6e0jiQtgYjSDFrIy+tlX8ktGAhq202kSsKzEJBRTE0FOVmbrIrhXE0jxxW6lFdUSdYteEeE2FgYqox4rREHMPU0mqqkxgoIqDW/maHiTXrl0A0ACKD/FYPDKGOugJLLzjJx9bNdsKujIPgOM+72DGPt2tVPw+vD5lG37wYk1rN1sNW70kAwAhOlEydW+V1+cdSiU8lKl9dk5Fs4ACliUiRsnAMeYDRBI3ZsKyiIaH5grsC2JSZ1AN38QoYPa8JpzPE7gSkq5KJaVQGBor+sWhm/YBwKROsy0jyDEp10CqeREEkuJ9FvIxbcpEBXtSkSxL2sFEpWXzmJDWWtg0KgZM7B55gXOggKoeB96QD0DTvGwrWXdNyuh10vpiA6kdcIrnTwdEBmIT+iprZHnsswqu3Ln5wpVofSaCuTNePssiBKjQWRkHXX1vV4MNWxhA0UG6sWiOqeidd/P7sKzl9pP0d1Z9Uksrpc5i8gWqQZ/8GrCxBtLieUyyylJvEo6MQUimYIXXgFq5gzCSzzGj2bq3sEsVBiNkILyIqK8jkt7mumPUXW37Ocwrjk8XlDmBUsU0STbLbrdipW4DEBKj7CVTKB6yiHtfJ8SjAJU6AdxSfvvkP2RQBR7b1f42hmlza8T1V0S69ZlUrQ6BwWsAn8ThNj4EEdqegDIBYQGWvVgV3N2c8JqBtewa01EnBhKJDiSpANhSwc9a8ToLYMhPGOE248ndEZ+6uwcAvD7vWsmOmoP0RRL2KKwi+g0FCijQwnghQzN3CMQBZxPdHpWBOaNVpM57IN8E5KeENQmTFqeKwkW0V+ZjA3TWrgAiwpUiiajiPUXEOKQVT6dTM3Kz5/CYJxzXaWCF5ygGcluLCihTHKgiQyQYVpKjM7MsoeOPuf0v0aj87M/+LN5991289dZb+AN/4A/gr//1v4533nkHAPD5z38ez58/byAFAL7ru74LIQT8m3/zb/CH//AfvtjfT/zET+DHf/zHL17PCE0858MdJlY0rQmRGtnUoCuy0qhrywhqbEuArpzrSBO7SSe7DKEpinFT1Dx0G3M8Y2AAxc6xpwxrjRliTFpIEUDzzTD0am6tuUYcS8Vr3jWBLdnnHSPhBcM+VTkQI1LtOf+1r7ibHgHcVrqAgI1zjYgUmmEXAJzKhKVsRbSXg7CxJz7N2K+GbdumsHnQYyBHqGxq9yaEihBCqzBdmZCS7DuqNiWvsrJJu4x3nr/Bs90J55Lw6rTDaZmQc8Qb3uF8moTKLgR+uoCCVAutWa6LYkXV6rgGiKxStwm27XrtmkNU98bYhahyT4qkL4aMQ1wakzKFjMmZIa0cUUCILewSmgEgILV7LDvnyFOb8D2gtfTmBT0s5Fc3BiYCjzNAINOJ9MHIMyhgXNxvCxn5fUvqeUBVTnrMNIpD3zH/ico01HGy9wycmGiv9R2gAQUxMiQQBQkZbPxU+vPs+l6oiNFSyQNYQyWAhX3cBGmTqApLvYC2aZC1do8s54fDD/18PC9yLMx2Bc+SGUQYRad+V545Khpecp4dIBGJxqMwAWVmlAMjqMup4SpOjHqXMd0tMtHqs/r07gjcoTHNRRdaOUiYCZBUV9wCZQnNkZUYwgDpvpsYmS1sgu6nEh0DYOAv6Bhs7cnUhM8iFN60bxC7Agq6CFKxbVglxERJQ0xMOJ5nuYZzAh0D0hGYXwFlljRlvgHqTQUdcs+qOs4CVFbZT74F5l3G85sjns3HNoZKAkDFskvii3KOKDFIJ9EQH7EwH+EMxEVlaLFnBYWFus+M3st4gqSFn+XaqEasYUa9yb2/ErqYWUGQCZhZOpskWqgg17SIn9q9aaymsLayODivqWWqEknUIdeexGChectcnEPBqQA5BFg1SPOwSVRxTv8bAJXv/d7vxQ/+4A/im77pm/CLv/iL+LEf+zF83/d9Hz7/+c8jxogvfvGLePfdd8eTSAlvv/02vvjFL17d51/9q38Vf/Ev/sX296tXr/Drft2vQ+UA5oBFHQEBc4EtLUtk0GMosIiBUGoHAwZu/AoNAMz/xHuzmL9KM5AjHkIptgo0xoBI0GtjU3XgiKG2ui8AcLc/N+W1N5Czc7wJC1aKulLuKWE+dfnqtSoIERZGarjcpLU5KS5aOdejYw8ShKrzVv1hsDDfihrt/P1WdOKxto0BKCZeo240Z8e2810cQwagVXJeXF2jlKp6pEhlzxirZt6owZLSptjJvTKxrTknmvlXKT3roarPBefQXDY5SjghJAbHAiAghN7HhvR3BS/GUvl2DSSF+TxImUg0KnvKzRtlZfFKOdephT8AASe7kNvvUyg4YcKOM45l7qUMNDNM+mR/zP199ZO9nZuBYi9ktUwfb+hn78l3PUPXQaYP47TjuBBkYzqrsHN2Pr4OiU/rt4WD3fstuWH9SXC25klz1xsx00iO2B9CvwhjxgAlAoKuSstmJvTgxAS0wwkwCOTAij8eXQcqxhxsLogIQGUwqGkV2BCFNYDbB6l4nEJniWoVlMAq4ozHCNIKwvmuogQg6uRmqbkABLgVSI00rZWzLBHzXHCzc+FgdXamyJjuMqap4EwT8jGBjhFUZa7ixJ0JcuGQBmCMtYhjO5i42YpEkj2Pu4o4VdzdnjClgtOa8ObVAeWUUJVRsZID+rhIXaE9I98yMFWsS8JKLJqXJMUcy663AYi1rlJVRiKIjlxDcHUS4JVSaW65cyh4Z3+Pt/YPUgC3THh13uPFwwEPb3YoOw3BGR6rhPgmIN2rEHmS/UpZAe6abQMvmdVsT5iXeiLwq4iiNZukFIRo9wbNFKuOq5KUgEhyr+4OZ7xzeMA7u3t8anqDhzLjVT7gWCZlY1Wfp7KKWsURGRmtqOaOxEV7VoO4Uaci44wZmKZQQfF/A8O3H/7hH26/f/u3fzt+y2/5Lfjmb/5m/OzP/iy+8zu/8//SPne73YXOBQASFaxAK1cfiLFXYy9PD/uJl4CuNVFGomk9iIeVPyCAojAhOGrcBKoe5NiAy+iTL3P3cdkKcy1MY6uTKYzhmHSFHrNJDkC7rhDL8L12nW7S9BoBM1czMORB1las61kSrycQkBIvJj0viPQ6FfvbtxVgTqn9vBuTBCvlnpTu7+yVsV/LmoZaKUSMk1ZGtiyoEKTiMavafSkRjFlcZBWkCN1f5f1dAFMASmi+KiAC56S1gaIwAyR2/L3devjQWCupLF3G9oXUyxADJcekUMGesoaA1FmZhVFZWXQakSTMs11BRqpAkPY716Tt6lmLzvBst63LsYVuEtVNn5JMLAMYF5okUAvv+BIIvi/4mk2+n5ogdxsalHNWYewG+PLm9xYpsQUGRExPVFuWn7yhdPdmR5VFJyGVeXtYCNUEnBiFlIAL03AP7bjrs/cG5se9vwUtFjaSP9wFEiDBDTkR0r/855rQUin9NJVWMXw5q04iMHhXUQ7ijAtAGIxUUCyORMKwhDcJJzWAw8Q4xwSuAfnljHWuKE8DDrtF7s0SQacIDowTdq3kgHmm1CDt3sI7DFiNH7aslMTALGLUoBl3bDoj0wtVap4tVIBKhLIGnBYJS1ildGbI4mK12kJyzDoB5UaKDeLpit1+xXpOqA+TTOy3WRxcQxTtjoIDUiCynFQYa0ybpkqDgPM54cPTodUYsknb+uQUJVWZbyV5orawt1xn3gXkp6HZ4bf7qmnH8QQJ/SxAPAPpLJb5UsyREc6QVPUdkO+KsCmBlV1SUKmgtS6xpeXv5xWfe/IKnzu8xGd3r/AsHhHAeJUPOOniX85fF6m6gCDXl6NqIO+msyRjaLi4hILEAXMszeW6lVS5MhZ9te1/eXryb/pNvwmf+tSn8Au/8Av4zu/8Tnz2s5/Fl7/85eEzOWd88MEHj+paHtu8CZUfFIEx9FLcoOjpY1AvEOhFQNtNYvKhgxxgAB/tuCq09atFz8Y0nxILAVDFpPB9G+/zkzbQfTGMkquQTA1vMifnHlCHFbFORmTnaWmoY9qZfXZre+/1J/a3paJdAyitjd13W4htOzBv7pkBKDJzIwZWBR8xViljHkpjL0oJCl7GzK459VTb5vQbGA9n0XyYSNYmEnvw4ly77QADh9sFOQepfGyF66ytNMPIqM+WGdaAYWneLrYljf8aa+GZFPnZM35Wiohg7ChLxg8Yk5rtbbUdhXttnepAu913L5jdalBaqJQutSi+WGDm0Aac6/2mf842G5CCsRwOYTDT8FxWZTtMZyb3KbTXtxP+IKR150LEfdFOjJTQwhe1EhBq05yJmAWy2qyEdY3iRFtcerKxHQ4MDFsDKf3jDaAYyGD/Zm+HAaxcDjuwSt/+WAZW+ms8fJchachF/ZXqGhpjhMgoB6ljJMUIWbKAmBriqyxAgFYSl9OFUHcR05yRdxXIhNOrHZZdkrZQf5lwDsBRLPJ5XyRVd6f7Vt+Wi1TloKGgSbQlMVbVlqEZJ3IklCUAhXvastJY/JBwOkecNMzR9D0KaOKC5i3CiZEPDNzlBuTauj5KTad6KChW+HEWYBeUoTWGBkDX2ASAMmF9ucNXThPSLmN/WLCfclswr7UX/bvdLzBvKNND1hqAQ2f37LWqAmhQAE6xe8no8YlF6lGzOPkaGKVKQJKFlxW/tC1noIbQAOOUCp7PD/j0/AYBjNdljzdlh/sy41TEJM+yaQMBIVYkdHuFXcpN2yKZoWJLcS5JS3b0jrmWiDMkHF2X02Vn/yrb/3Kg8su//Mt4//338bnPfQ4A8Lt/9+/Gixcv8PM///P47b/9twMA/sW/+BeoteJ3/s7f+bH2bQNyIhUABaWRtWMYKLGVu1HIMoBqKAIQszbtWHZbbQC/RtX61TOAYWKfNK14whjD32oyAjFSytjyRClIFojXNABopl/HMqkRFl2AJTnOaLZj7ycqYsl95XqsLf21bIGM1YnpdVj65GdpyANY0e8ZKJzcZI4S2yBhnd5AigHMnbInh93S7tnpNAF7YD9lpFRkAGHCaU3qFkyIUfQ+gRgTi6j6vCYsSxT6smqY2IBqJeSchCqPkq7MTOqxIrVS+FaEcb68QcsK2jB13nukp/zKT6tibCDFWBIPUm7DGYWDhHPCOoCHicoFUFk5opAYvyUS2rWqk2gKZbiPW9A5gBSX3eOZlhGwqp6JnDjWtC8O4HptkbyHBnL8MXy/8Rld7PqBbdd9UUbGooVpFYxU1hIVROqrgwZQrQZPc6w1UMtdl8KMEZi48N6FRkS3cbwgnf8NmTz2ObQQ0gU4+ajNAyRjkyqhVE1V1YzCdr6Bwfsq1vCEnlYcO+CQEIgwHAgMnMQUcbevmG4W5NME3CfwKaKmKqCguDTdyigT9ZCZq0bdQj5MPe0b+txFsZWPWkm6lAA2VpmiYJxV3Fjbg2j3gBgh1QZSWPsaK3DhCHFwTeqrlAPyeS+7mSW0E2MFZqBMUfZ5l3Hz5IR1jShrhLnr1ql72LCZzi0BWAPWRazul13Gec5IsTQb/Bg7s96dyXtavXfbJki/s+rKHAWABBMkB/F4CWep99gKN2pIKqaKeZeHumZrkeryFITd4irjwCGueJYecK4THuosQMVVQbYKy4CU+EixNJv9Q1qbD5SMVdysIWyzcaW2G4JH56CP2j42UHnz5g1+4Rd+of393//7f8e///f/Hm+//Tbefvtt/PiP/zh+6Id+CJ/97Gfxi7/4i/jLf/kv41u+5VvwPd/zPQCAb/u2b8P3fu/34k//6T+Nn/zJn8S6rvjRH/1R/PAP//DVjJ+P2jLLqjOFikNaQYVxRkJkusjKMV8Tq1hs1H+IVVmV7lJrg3kDK7hsXBvch/i7siVT6Dbwxji01SW2k8O4ijVdg7mU2vmsHIXJcAzMNRaIiFu6q33Xzg3oollpvzHTo080occnbcICofKIkouKrby/he2n1WEibhWYrU18wcao9y7rvgCZiM5aeGzW0NZxnSTlT/c7xdJSwpvehMV4za5vjgX7JMuQddmr9kQGUw5WRwU6sZO4K6Yir+mEGYhxs19EF+NS0LG5VmNW2oPpQEGkDgQiMSIMuMg9nklCQHuSfwUBT+OphSKNrbA2j1RROKBQQOCKAsKktX8SVRQzTHMgQn9B1RmxsXqhXvTDyiQmg1cZttDCkrZq2upNen9RZof7ORTubWarTbvn9nMLSsaQSf9sCCNYqQCw6YvGcIjvDVpGUCM3bHXuWI7GXFDfycCauNeHiUaPJdoS9xlnNHh1Y8ANI/083OsDKLvCwjTwZuyp/TMfDtWvIImGZd5Joczjm51jCjWstJ1I1oDlPPW/VePCUSZ1KhBgF7h7oRiTYuEax6YQQ0IoFShBrBnyGgcNkUzWks2SUkWdM3IOsmDIoTFeFKTEwDxLza68JpRV20A1NzVy051wCbBiQj7Diiv1+1cDECv28woi4GFJAvJuMnhPUuCxee3o/asArQGVExbVx02TFsZdIihIWndKpS9ymqmfIK52D0MV2bwKiesE5BvpDCGr+Nn+rRrW2mu7LoT8IJqiaXZ+KFkSC1iFyIBo/d4/3+L59GQc+6uUZzkuU3P5BoB5yppJVtQYtbSx4FwnsdTQBvW/28+AjEAVXH8NGJV/9+/+HX7/7//97W8Tuf7xP/7H8ff+3t/Df/gP/wE/9VM/hRcvXuAbvuEb8N3f/d34a3/trw0ak3/wD/4BfvRHfxTf+Z3f2Qzf/s7f+Tsf++Sb3TZVpLRgn1YspRdJOjfNgorw2JTL0FRTHTz1RjTxK/XVmYEUHx4im4ioT/D9nPrgX4mMkWsaETNXSy2rorMzVj3XBJZNWImIWsU90I5l6DypbqFyQEYXKRqI8mnHAwO0CddsxY/2WvdWiRexRU/Zb1e/tjKW9O8uYPX0fgzc6hNNGg6JOnktJUpsd1qx03Te897pVQJjjbXdUxHOBoR9z3xaVN9ibsVgW7HKbFVJVlJBC6VZCrJMajaQSCgNUKfP2EGgX9nbPfTp4L5Q33YFbmyK/YtgzPpzCitmLtiT8E73dYcCwsoJAVKsbqIMsBQD3FPGSqkJdMU+U+vrgFC5wLDO4Am02S70STrAWHbYYPim4LsBE2OZXN+xEKBn/rYgxTs8W5t6Rs62bsIH2KAuIMEJZZkaPuhgpofkxIUYCkQBMMuEYPtix3TQJUiS/dgv3P/m8RrsfTlVZW6273tgJL+47/b3Lz5n72/248856ETMCq6aGZ39Tqw2DBBxuDoNNxZmDcC5W/ozQar5BikaKECMOlNEaGJZb1bGWcNOmjpuACVoGCNkAiggT8Zshu5hk7ilGs9zRgxASgXrysgh9krTugD1IQ47J6m67NozE3gJoF1BmiU0Il4zGoLR9mK9p5bJae0cFOQVKIMRpdI2M8TbxTJrzuIkHJUpSjcF+3nFp24e8Nb+AR+ebvDB8QZL7mxn1sUzIKU6YlzxcL9HOcn9Wp8x1mdAOFOrazS/AqYHEd7WSU48LADeSCFDvu16vZKlCCaApl1ZS8SH5xt8IT3FTkWwA7PKpIVdYytyyejj3D6uuqhl1DIBZRoMIKGfnUPX6wRilG1a89ewfWyg8vt+3+8D88Vj17Z/9s/+2Vfdx9tvv/2xzd2ubTMVcNDS0UqrYwLeO93JitNPUlC2QYWXRmll1Z74on2FbUAKrS7BkFGjP00g6Fc6Jjbdsh3bG3eNodnFjNt0xiGuA5ti+gGbBGZFqx485QqIm+hlOOjiXK7qUMIF5d+ZlzhMSmNYrV+XF2wGHRCb8yGPgs6knjO7lNvEbymypYr2ZNK0Nyu+97BOeHMUXxUm0f+sGvIJGqj1mpOcJbVuXTS0Ezqt31L3iDHPPZTBjFYN2eowyTVjmBAtPdoGs0Eoih46kwwmsZ33oHRbKydSRYD04QihsQNXrM4wQ0zgIgLUL0dN4QIqppCxU/Gt3L+AoM9AZQVxG1As9/a6yNVvvhyCfd/uU9OkcP++z97pHWL0VzGzRA8GbAHQVtXURfFABx0WprGVqM3cHrhs75UHObKvHgaSPdDAkNjx7d63kIz1a9c+12qXiPyFW18bdCV2FuyYkoECQq+obNqOtuNxPGJDQfaRKllSxqIMGUJt3taJS9uJorZ9EKDXnpHa98vnrm3gxKiHakIgATAapqBdaaGUkgIKkiwIq4ZTEwEncb8FA2EB4psgRQD1sQRDhLiZsBQ512nOmFLBNIkr7qnMwo4YW0QjA8aRUZP6SbECC60RFJL6Ya0J5Shi4LqrCPssTq+7Cpwj3v/gTvalIbRqxiZWqXouuHt2BAF4eNghn5IIbnMAL4ycIvaHBbe7Bc/3R/yGuw/wLTdfxn+Jn8MxTzjn2BZqpYUeBTR5oTZI2gOBUUNQfZFkKLWSBZrazSZOjt1EMGk68DZUyiwlSb58fIK76Ywn0xm3ccEcCm6nBeecRPy7Bqkqn2IbGyvbIrh2w0c3jwAmzu9aPZt3liv6yK+2faJr/exCaalOlj55LOInEalinySDwp5jq2gZiHEuSWoEbVaR3WBKWAErTx8IKOR8M/Q77AAAsRhVMXMbmM24ygbMommjYuxWB+vyOeSBTakgRJIJ/EySIjy7GgumOUlUB++T7STohZXtu5sJyVbInj2yfVm2x+AlY4ZcbJPEaMAVNxMTuNdHsnTkx4rbtWMoi7SPEgt9sjvj1f0eq7ItdhzSESqlnurMdh6xgnYyuOUccXqYJSvArkXZGBvorGy8sWxtKShXJg96UuO80PuCbdYGEvKojZWSNPYy3OPtVtVd1hiyijCkJvvPda9s2SK49xsirAAiuphbKiP3vt7YSNvncJxRrGvgW5qD4MtBNEG1A72MMaXfXvftY5tlyNkWFHwCnYnxLRX1mQuPJA54cNlfuw5WWhiIXX94hCEx3e323OUANP69/Qx3QDTsTzNbhu850NGOafuwY7lzJQPcep022fWJru9bQLxmxhB13xe9h+yAB5IxC/oZ1ZkwMVqmDkMbHGhpseoNNU0ajtmtraRBLQG1EMr9JEiRlVU5oodQ9J7wSihayydP3TcnJRXdTsICmXGj2REQMUgFuUwQFkWBD+aK6bBi3mWcThPKQ0J4EzG9JuRbQiHuKdKFUF9P0jfMAFD1OEbbcZSJe07CzlCqklGjIa98jrjPezy82eEr4Qm+cPsUv3D3abw67fHhqxuU+wk0i1GbT5+vS8JSIa7lBlLsPrtbWidgeSKMVZ203yhopKlbaJBrN6+LicMcFVux0hRKB8Lan1qlb2WfShXAsahr7akknNWJ1qIGkapk/rCFoES6cFovn6+vtn2igcocVoAmnGtCrpIR85CnwQ3PVru+jg2gGo9JQI6ftNtqj3qKpIg5NRSiVODFRAy0jJ8K6czbgavUgAXQctuEQKuahtXmreFTVm0yO9UJK0ccaWpeK1nVU4mk8qX5och1i+j1mvbgGkjxK2aflp1Cr+9i7WkxT5+NYYLlOgCV7bWTe69eTGQNIEHePy0SvjDw9OtvPwT2wMOTqVGmbV92T2PXtKw1IJCAU2gKM+YVMVacjrMOamg0uIEdZoggrLFPaBobCs5IMI5p51sWy2uIgoqjJx/uCVnvk+iPFo6YKKOAUDQluUDAaEEPy0XiAaTYKkY+62ysdfksWUYiNA886plMtyT78SuhDlKyA9qNias06LNMDDtoVFRA3Zg8vgzpWD/xZR+Km7gtzBoxPqMddHD7nm2sK9LgvI7s9f63zMBEwsTVNvNQixK0bw7H7efuSYzt1gZ3d77bfckFMh7D6QJkhtMdDs7o4LoxQR7vMEYWx7cV9/1YOIhrb0eKmk4MS23WY5Lbl78U02ro60Hv6WFe2701zeB5TTgxoXASmuMEqYgc+zmaniWe1G13ln6xaFumWDHPBdn52LT6bVAmaRJbAk6KfFLV0I2yLwAQhRlaJk0LVvaKtF6R3TLzTSHVh1iKcq2E47THul/b2Nd8YJiARZ4bnMUV+PVhxqvDrRzjFBBPAeUJgacFKVUBZjWgnKN8p5KU+9gXmPCfmcRnZbZOgl4niSDVpO8D+BSQ9xF5lxD3GbPWPduZzgTATgujPp8fcJeWQSR/yhOOy4R1UYiQKhAZUZ2JJwU9ZpN/v844qt+OjcNTLChcmzncWiQj6Lg8ssr4iO0TDVR2IaOEIim7kJL2KVQkrkMqZWVSV9XOEgBdULhd+e1ixlpj00qspnrWVfQQBtLf/aqTSPQpkuUhcb+lis4ENWClOAgupyBhH7/KnqjgLnbR0ZkT7mLAUSchq/cCoNVi8JlCYaOBGbMybNXfqxwLOyKvT6E0K+TK3Yyrwial0MI+8m+cLITG1LbWNktxbDMTn/pzDCRM1AzgqOxTYcKbZcb5kPDW/IDwlPHe8Q6vTvsGpkynsk8Z+7SicMC5jD4tgFTbfrY74cvhDvfHuYORluXhVpY64HrdyjWQYnb/Rm+2330KuoLJ4IBKBCOCURxrUjhgRVKw0hkVASL2GdGqAJKybsZwa036WQdEtD+YAZMXT2/1KPY6IJk8nqq1/XrdCV15brK2uR3dv7+UUYhtgOKyvlZfPVuoB+hmfZBb08GN21/f98ii4MpnbP+1huZKyyag1Qrn1bMX9t0t+FFGbbtvfzyrqeI/Z5NljRjFttTDjAiGQNAmqrYju3j7rIKZaxb9DbRsgIxEu7gfgrjV6EHtrqhNbGu27HY8Awr2t16H+UelUJvGw659yTLZlUNBYQAcu2Ot6ahWNEBARVxgSyLUNWCNtkiRz4roHR0IF2qC2bhT1/DIKMoE1BJwPkk5DkoVZIUEmVBOChDU9bVODMzcQikcCbEEqS10WxHuVtzenbGfMk5rwlEXQFwJjQZkCc+kI0D3EUAUgmJmySDaF7z97B6furnHe/d3ePn6gLIS0usoVv/vSCZimopkKwVGzZNUuzZ2K6Ddf6pAOEkWVj1H5ENAyYTlDthNGYdpbWPVFCU9+e35AXfxjGOZ8Cof8Gbd4WGdcD5NqKc+j5rHkIWrAAxjTiARy+cijMs5J6Qo0oxJ/cLWGpB/LWr9/O+0TVowwVIyAzFqKANosMZpoQZt5NkJTLdMSwoFS004kijdrxbxizKZE3EDNRYesddt3ylUUBndby28YuEAK4ntt94BLI01y+RUL1NCt2mog6j3CkiRz4XOIDm3UDsvW3EvSgva4L/N3LFqx4AMRm0lbKER18ak7TlpUau2etbzNLBymFZ1pg1YcsSrdY/bdMaTdMZpmlpIZRezFC1cdsO98BOHHaOypHTv57Vl8RgVWrlrWyxmH1OVGkLErbilZ4QMbFl5dK8Pqsp4BQUps4Z7fF8rIEyoYvKm7bdwHEI+xrZUdDBjnjoNpLCIW68VFoygDmC5sy7bPrb9e5uu7oGpbQZyTL9kIEWYEQCIgE5UPs3R9ls0JMAsJQ9209rAir93cn/6vq1/2X5NCyWrWksdt95m+8EQ4hv37wW56KEc3zAb0LPdvJ4FchYdmHjA4z7bjuG1JHosCrXjlAaa0LNdPGDy57HZl33/qqywAm446G3T2NB6EWqy2IMIMvVc9Rxa2QHuGXPM4kG15ITTmrCuIl5lJWx46vtuEy+xaFnUBZYjN9ao1oCc+31jswjgbqDGRZx8LdwRAoM5oqyEYoJdE77a4Su1cgKACHHrTUV8suJwc8btbsFxmfDqS3egJeD2M/f4lne+gnd2Ut/nVx6e4Zfqc5zMCZuAll7GArrE/l6uaXlGqLP07VWdtoulzk8ChOpEwE48UeYpiyU9MdZKyEgCSIqkeqMq88N6u5iAyggZKFlA3qJZsE30T9zmAAB4lQ9473SHrxxv8fphL+7Cp6iOwgxmAcumN8zUM2Mnx2TbcXKOLflgSjYOEHL538BC/9d6M5o7ELcVo03Sq7PJ34Y1ACDpIO5BBUiyGiy8EUPFpADDbqgIPYsWl6t4yHM7D1tJAH1Fm1Qh/ZDnFn+fFehYzRcf8rEidVYRt3JoE5Sltto2ro67QVcgBWyuI1rasf+u2Zc37YBmJ+UamyXyHApOtppmq9fT21rYYcLWsdX7p/iQxLaWj4CO0kbNQFIky+jCOUol3Q+XGzmfmPFkPg9izUDcVu3Zm4aB27mtNeCYJ3UErsOEJqECDBOZ1RAKOmkMviPGpFC/vlZmANLuoQbUoDWSIIPwxD1tz28FhKjCWP9aEYktFu4MmjApClCsb7g+YkDGV7u+ttl93oqrvVbJ7nc3fuoz3lp77absfFLsc8zc7kPWe+NBgQmWAQERso8ylFQAhJEwsWGpxthRY7OkX1LPcCgdRG8zs7oAt0+o8r6FQDYA153H4Gprm03kH9HOJvDeinDtGG2i/4jvXy3IZ6DIn3PgHjLagh9jP/zrjsnZ7lsEve6gbh8EuS9NaFxD07SUEnA8S4hWPFFI6mYVCeX4sgTmRWKiUbGtF6DXgIS9rtfElYBgrBPEO8VfhzmyKuOzrhHrkkQMu0hqcchQ3Q3av6b1SZoxROL8bQZuMVS83h9ECpADXq87HPOEV8sOH7y6xfLBXjxV5ir/VKtSZ8b6tCIfxAuFMiHfiPkecsCLLz/Biy89adb3cVcQbhbN/nHzCfXspkxASRHhFBBOhFDRQYs1hRrtkbb7uiQ8TBMsceMunbELGZkjXuU9Xq57vDgf8PK4l5CPZWD5R0Cf26wisaw+WV6r5p+rvpjVhQX6ex9n+0QDFakSK1WFzzW2QReAml8FKbwEYQ0e1gmlEtYiqZHbiRQYQzm+MFqpQk+bBkImaEIA1LCs13bZrjpNr1Dj2ibrfVpbOMC2seZLxoknPJQdzpyGlC9grDTbRY+X6cUW2vGhptap4FfDsm/TA4wpymKHLG6KPZOkhW6goWxjUhzKtmJV27AbAFSiBgitrex3ezgnx3ydytTASa6htclaRhW5pCcL2Iwk4RtAqecShdVRkzmWCmWSqhlqE+fZOZjWxpiUIdyzASnJCZ0zYgub2WsHAEUf8KJ9x8I3MxcUBbZNn2KZa5yk5g9Iw0U01AGqGipanWOwfXfQnrg+YGUQtjWjrJ2q/rS6UpZKbFlzABpIqW4CN2BUbHL1+6w2SJH721gInzUm6dRe32L3FQgoVfVQTp/U4QeaaLDpFhgtLdlvXljYsrraSlj7q052zECFFjm0QVgn/Y8adg2UtTb2MwmPg/awH2MIbOA3DQlvP4gOFi52pNlGxG3y1gsftSpA22+rKO/6vbWVvyYDLQbsK4vmxxicnKP6dgBcQg9vGZuxOVdLpTYx65D1pPeDojuXClBUf5yil8IdvEibSK8wvxJKDCbRrhQzoVNPmLCQTuwSeoqZgJqwBuBFDXgZ9uKUqym+5/sZv1Sfy3j4akZ6GXHzUq7x/DahfrqI7qVE8MQomiotOhfqfjNZBbpavwgpI6aCu5sTnu7PLcNzLRGvzzPKKirnMBfUwKhICIsb/+wWexmI9umSA+6PO8TAeHv/gM/tXyKFihfrAR8sT/D+6RYvj3sJ+Wg9Ih/+s+enlIA1xJYxa5ufO62fWHakLfK2Ro5f6/aJBiq2qlxqwqKaDR9umbkga+NFFS6ecsJ5TchFJqsSeizdT7KBxGzrtPaCh1MsUjGzhsbiVAQptuRcZJfGyAQsmuVjKcl7BSu+yJ8Px1gIYNXJ6U3Z4VxTSzs10zc/IW1TTO1zwJgi6kGKAZ1WV8XYIrePbR0g+zdr3NH2ySSCR0IP65jOZY75AlAZOAv6n71nmUm2ovcW9OIJU7R909Dhd2bqVpwoOATkKhMmqR8KEQO6AphiRa21PQHt3it7YpsXdkKvMQbJvvLaFO8iHIhbqrWJaaVisk87D6hgVDAKhZZmDE4dpCibYv0cAFZ9b+XYRNbtmjdMiqd1232EMI++VpMHiENYCNTAiu9DAcbGUQOu1zxHbGuTbfs3goT+GW7Ak7mDxKY12uy/lNCNV6mHcAwQMIf2umdSgMtzvQiNMA2utMa4+L1A+75v4Q68cAlC7G8PCu31i/2MTFCLAznw0t4jrQHUQFe38H+MpyHS4JSFCdq597HQW7Ab+7UNm9nfFBjEEjbtzaNh1KBZOIW0lhZgqc1stu92f4MAEPP62IqSTe8DpuaCWjXcY3odChoudCJ5IiDMRc7FxOFZfGPqKXYQEdAAS1iBeg7IUdkFYxgIktVjQtPAUuxwlZo8VAHOJMDIMSvmKYMguhU6R6AC5cDgQwHtC9KcsdutuJ1XvLV7wN10Rq5Rs2oiXr8RA7k4VaQ5Y80BNQUEy6TxDJSySxa6sft4WlObM/ZhxVKf4MX5gFenvVSUX2NrTyhQoSTZVMGAaZUFh2VbAarpC7x55ipyiQiEloiynau+lu0TDVT85Gcpuh1AEBAzUJKmXIkDqlH2lq1SqghtDf2ZrsIGbxksS2tsQAYKK419qxbCtpnF/VJTE6gGSO7+Pq0XturGXuQqKFVW2oRznfAyH/Ai3zTmwCzRzfhtuyL2K2bbbMDzhlxb6/LtJNWyRuAACvq+5yAAsDLBnEB9yMs0GbPqUIw5sQwT2wIxZsqb+1iG9FIfzhpTaNHu+y5lBDBe1j3A1OKllSXkYJoJIg2nOD3FNrRzbfNMkZU2J9cuFyBFAZfsv4f3fGmDonb0Af0+RA38eOFsceDOQK0BFGNQvHfKqqmGtgnbQi01sIV73Crf7r+FUCqo1dkRNiVI1lQY2RYvbrWJ1vZnLdmZjR7m8eEWs7A38CLusYSVpcK5aZzELqC7l9rnixqQ+YweDraSk/CTP2YHLJe6DS+qNm3MloWBXqtPF2a447OIcrehoMf6lix2ue2nZb7Yd7TvoZqPCXXBzvacukCmHXOAP72JLvALMxQwyLlUACgBtci+ZRKCm4T69+w9/3w3JkTPzVLBK1WgVaaWc+HY2w4FYAR10OUGTmwSlGMSSkEDHA1s2eTszoGDmk6G2sJBTTcVCTVF1MgoOxJ/FAuhaBoyBxbWY5UQCwegqkGkmd/RXMGBkdlWPZB9pSKFTS0NfSXQoloYlf9IYUa7frmOWgNen3Z4c+6ZjzlHLGdJqaYloGgIKWq4p0YgVJZ0b4aawAF1x8BckfbZheokS+cryx2eTUe8XPZ4cTrgzXGHdUm99EIw4FgREiOq5scAainiFFzMSE4N7lqIEAAQUAjIxYxSL7vu17J9ooEKIAN4otriD1aSHgCSPii5ysoUUViRGxZwYj4qa5vMZEKLQbIM9ik31uG4CiLcp4zbaWk1Dm7jgkAVxzJ3kOIcZHvooq+842bQkkyOKOdEE17WG7zKe7xYDziVaaDmbaLxjAjk0oeQzgW9pocsSuXbS34fIfbQxdjGPAIrckUXHTgxoGJGQHPIzd+m0pVzAhzA8rqEuplI5VVLwfahqYUjatZaQFkLGDpQatoKA6a5BGQHzHwq9RbpezbFZ/f4cNS171l7mRGhfd40H9IPCtaaRA2v4R+58jDY5JsOxVKQDaAYy+bDnQZI1m0okKmxcNtUdFncjvfGx5uLazt5D0PIgogbw2LtwMBgyubDPEM7BR6AQAcTgAEOu59WmRy6b7/Z6q7/LROSOQkDAT7RYAz5OCCj19z2xMb+oIU02iV4sHJtIyem3W6eJQi1aV9adg517ycDYRUVZMePbh+u73mcQgqWO4Aamkje089wRWdkqqIY6h5Sst+CGDvbYqxUB4QEIDQmo4XsNsArqtkaR6CuWlfHUoPVBA6qreAiDISE2xi1MlKyLDyAuQrTU0nWS46Vsn5XiqSgh+TbyfoHUAqjRGoAoSwS3mmiagNHxGJcpywFWhiqt2edK+ocW62koK61rCnP8T4gnsQ9lhhYnjPK8yypvzmATxFZ7+mpKig5RgVO0iYRwvjEMxCPApzyLUsNIAZ41a6ZIAUo9wVh1wsUWibdcZ3wy/fP8X66xRffPMHLNwcsD5MALGOOZnEHnmZJb95PsvgE0CIOlnaea+hGmc3VG1KuRJ8fW8Dk+nUmprWV5xSKgJTNhJO0154wISvLbxoSm3DWGrGGitWYARr1FZUFlRsT82Q64yYtSPrdD8qNCDkNoKhA10I8fqswOr4zKibenahi5YjXZY/7vMOLVdLEvND1sVUZYCvdywKBPkPCaHxv0ral/0sNTUfhWRTb7JoidT2HgZKtQFaM93o7WpjH76vpdzbnYcDG789PrF5bs6g9fy4BMTBKqNjNZxySMF3HPOGYJyzQMAIwhHf8dW03Y1G8idH4vU2KtVuqFiaMUdwO9CpoSEcXobSwJYCENU1MLaJa050Ex6YIKGmFIt2xtiJZA7em7fHns51MW4gQaOyCiWLts74PedYOgNOioA1Y262FUly72/d6LLxnZPlz9ADIv9Ynxg5EAjGgYMXYlDHs5MAR9bpUbb/uuh97+lo74fFn1IdqhrCOZx1MT3KlrYKGM6Cp09eO0ly0QZ3+h7XL9nzapXcBrn2OMIS9uCibVXs4qE32qvFr/cI8iLSNL4GXhgaIQKE0KwBjPzy4YXWzBYThsXOa59Iyw0IQs7egCmJj6UrWIHoNsghyOjU5kz5xE4k4lhkySWcSIDJXbRvr31W+Oosni2QYWRICA4lRbirYwiRBCiDyGpoXS50YRrzkpwW7ZyfxdnqYUe8n8DliXQOwBkwvIqZXIsAFQ9icBPAE1MhYn3DzUOGoPisKBMuegScZ82FtbVkhWq0YKo7LhDenHUoJWE4J9ZhAp66/QhS9VpoKbvYL7nYL7uZzcwm38d3GmHNJeH3e4fVxh/N5cin3Oga1Z5sfHRM+avtEAxWg6wHMKwJAi89LWi8BccVCCVWdQoEeYpDVcsWOe3zbrygBubF7WttKuYLwkOdhNWuxfwAAAYm4CaG6noRceEo+Kv4uFaHKrVg54D7v8EYV5eZhYudmqbBABydea2ITTGUaWAATRZo4mN21bVXbttm55xqbUNTaax9zA2WWHZRZ6utkjgjMyKEisDN3c5OHhUhSKAPDVHRlBtZMHo7Dij9rFkrWVahdt+TuB0QnZjZ9DJG0LRG3wpP+moEOoLxeyc7Th3nss9eAjdcp+SrHYvZmRm/FhdU66Fk5toyu7pMyCqV7pg85Vkk0Sl5sbe3la/S0MI6mb7d7fGXFb/2HXV/xfcPes3TRLsCsFxqGGFhvYmMAAOUJSURBVLkBBJ/l47eui7B99olcYuAjABiFnXbGPeQirqSm0+iTak9ZNjGpfgdoA/Q1oHHBivi/HRho4lp77QrrMgCe7X6vHhtDm/WsGx5eZy9s3OzHzuuCffGAbQNOCGh6kFIiuEiVKUYAc21hIADqLaXZgjmoX4m2g7vEho2oh3Hk3Ak1UKu9NnyhtYMB34B1BTD1savVc9LPVgW7JXc2FSW0+9HG0xZO4u5E3RsNFIva7cvxfCHE3l4aoooM7EoHaHb8h4TwIM9buamiWZmEbbm9WfD85ogpFrxHd7jPQWoGLQHxGDC9JuxesNTvIQEk+UAoe4APhHKowt5AwlUgATJUBMBQqpjnLFk6Ver12HWWIkUKyxKAcwSdA+KZJC37UIFdQdyp/UaJOOXUQurnkvCwTlhyEvZ66otyZmHC6ho1NYmkIveugCg3O/+Pu33igUpEHVbqZkFu8dKd6lQQchvUbfLtlR7H+jjeJ2SbkirHIBHwugHfwEBDjUwXE9o42XlaXsTAL3mPpSQsqkOxrKNIXeQLKDOyMV3ztXRsck0q+iTiwWK/h7kC5jQOzgZE7NzkWqN6qcjxDqlcZDe1ydMEnGSiY6lzY/v27RDIKj13gWmA2L9X7uGtpcRWisBSZW0S9THPQIw55SauPZVJ6lW4tGfv+yBaJmmPcOWeETDc+2H1375jfikj+LDyAFYC3Xxw5L06MC/WF04qZe5i2t6+ln7s+7npi9Z6KbC+Vs9p/D4NgGQLBDpQcWmH9p5qTgATLPZ+afFrn00DWIinDmDF1+aRz15nO3zcwutcBjGnZ1LcOVTuIYoOomQiG03t4Vby4SpgsX5z1dLef96BgiZshQMp9rdnPDbnQHaNes2NiWDfXr0tHvN56U3Z9zscS9kMgWzXBdFSI0v3X+TZtBzo4MJzKRasIcJcckWsexneo82zRJHhYYJn1LBtOwC1BKwAMCk4Rq/VNh4jtlCEv+b+uc7MGbigxODKjVny2pamozL/JTv3IPoNY5pqlVTgukTRtqwkJNMsrIuxNDnLKPDO/h4pVLzen/GwTDidJqzHCcc0Id8SwpkGcgwBwpyoMFcaBZrqrWCqAnWJWKY0XKecm7BkvERgVf3NKvswxmh/tyAlqVCfc5QqBw60vH6QFOaYCsrtCU/3JwWN6q/DADIhnMUgjxnIJo7Pl1rDr7Z94oGKTHrCXBQTqjSwgrZqRwVWAGEzuXpBZCvMR9xobAMxHmCc1LHWD/wXNX1cnRer6+MrU9rxbYJZamrGazYZt8yWWDBR12Z4RsEmlLUELWalhnYOuTbhsGMQGlVbCcBYW6UxR9zTm22y2qagCTAZgZC/PivQ1zKdaGQSTP8hn3fhMWNz1E7+nFNzCc6aWu4Hu92UMYWKm2nBPuYmPLbNW+3LdYfGOlm9Ju9+eg2c2OvXWAhjy1AlvNgLcpUWZjSAEsmKD8q+DZAU80VxTErbv+pTfLtWDlI+YgO+twDlGrD1bJTcWzRBsf3d+o6BFmeQdwluep/yoke/LO7Mxth+W82JF9nqK2gsiDuegw5t/0w9pLTNvumTDUN0K5e6Gb+1ZwV9gn/s/ntIBb6c8D1AsfM3NczAmNhrftItG5YGI0gDXFr1R2z27gASIDpdAyv+fMldC0ULxUibV4Thfuz1Z4xVJi9EbHFg37ns4zKDqKc8A0AIV8KSVYoUStXjAAriPJtSafW/ALUWmBg5Bqxr3ABgjP1ZgXfNen0uNdtqF1m/zbm3UutnTqSaswhM6yKeLSjUvWIKxFa/SmHB85zwIlZ8+nCPZ/MRb+0e8JBnvH+8watpj9NUsdyIeBaZmvcLSMJHdS/MR8vCseyiSurJYhoZ7esahsJKCIsAqJAV1ExA3TPqvoKihKyknZQdKgH35xkPxFjXJOGicwTvgLwPmELBNMtI9pAy3sQdVp4BPU4NAZUS1kqo548POz7RQCXXgKhgYDt4NKMr0nL3JJbl1U3ERpbaij6FLAM+4rBPL94ExqqxPuziWFT3XlUhl5+cjbGIDQxk3edaYgMp8tkR2Bjg8JOMsSOymKQhZuxDT56FsCwWU2LbJGVMjAG0ygWIGkriHsqQ8wkOiHSzs+05B+KrJcR9W7Tr00n1pGGvUsNQysCyUQITDvPa2iQS40ZFznbuJu495glVR0U7d8taMgDWJho9PwubbRkx+7llUBrDckWTIr6y3ECK16Z4QLIqKLN2tPM1nxQAzdANgMviCYPA2trW9wH73BagyDkIWKgYGYDGuuhAZ6vTlhWzAQK2jYDCJtk++IsQsgOS7WbsSN8H0NiS9qKFbTqNz0wNJG1X7baF9myYyNbt11ajV77HcIwc0wUbwpvP0hY08CUoMubBoxx2n/fiWGNNAtCZH+7sQzNzw9j+HwldlBki/SBvLqTts6KtkrkGJVNEZ8K+7pY+F9Okk2exrJzOMA2Hf4QFavtzZTc8EFwA5Kzgo8Qm2CTqbCmANr5Z2I8NqGdLHtCxaA0i3M16riaWpQ6upd84DYcey2t22rW2E5D05AplLGwLckG0Es6nGb/65qnWN5twXpP4mJwjsAb1WEET09aZwbcZ6SbjRisz97Fa2Ofzmobin8sC8JrAJzGIiydCPAmwIV3Xl1lBykFryS0ReY0IKl4mAvI6dUBnmUGQZ2ofM27SgqfzCUtJ+GB3gy+HO5wrSeiLAawELnIeH3f7RAOVl+sB+zw1St1SMb1/RIYX11YUIiTSzBXuqaWNWYkMFKl3YltbhbqB3zZPi2+3ypKVEqusoBFk4gk8+r0sdWQ9vIOusQ02ufiwhxxjpEWBy4F2yw6YJ4XX5ADyYO9ixj6u2MdVwjKUUDmrN0xvE+/DAVI62I6HMWV3PI8x66lPxAIGl5qkIJYDKmalP8WKGlhisExNgb4UAZZzLF2VroyGGf55LxAAIDW9yhwE3Ll7OehSGnDZiGYfaWPvTutf9yJcM24LKqA2kayxJt47xhf/s2yfpUqlUgN1W5DitUseXBtIMbB6wa7pQGtF/TwtbjVMqg3GGCfBBl50tvMTUAiXlL8Pw3g2xoeB+n5tUr8y+buVeXAAvRm4uee2G7+JOVkIJrKF6Ff4Mgw2HM5dQ7u+DWCx1wz8eiaELsCW7nMQY1z+epEZxR2gDd4p/XHsn91eg12HO+ePIJVkf4HF3bSjeWWE1FI9RyyAZOSEijmJ2DUXYTNqDR8JVobza0yZ6wv6nj1zuzljmgpyjq2QX9UQhemaoOcztBuUFVplki1JmRDTUrCyEhEqhu2+IAA0xFMRFCB6g0jLeAEx4lSkurM+S+U+gWsU4nqqEG8TYVtqJrx4fQCYsJ6S6EXWnsI8UnWQwoA3Gc+fPuDTt2/wmcNr3MYFKwsr/+H5Bi+XPY5rL/9yH2e8PE2IbzTraJUsorJjlIMIgGH1jIqwN8jiP1XmirovCKmiLhGsBQVpXzA/WfHk5ox3bu7x1u4Bz6Zj0+K9ud3hv03v4pfTc9x/eJB9Wor2+nUW+vlgucXunLCPHahco2WtwrCsaIVV8bqUXulWwz+BWryuckCGi+27CUh+6Stq2/xq3t7LHBupUjm0kICtdI95ahMygDZRAgpGa09HNt2A3+yvqG6q29BIC7G49DL7TtHJ+XYSRPwknVuV5kBOJOyuZRtesM9aO/qQWQpF27hqocYxcwaW2aL7zCyOrqecmh1+DNwqclYW4z5fUwlAYy2s7s1EYuyWOWBBaveu30sgoTa2ZXstre02ITsfChyuG+N3fLVkY1NsKyB4+8gz96KCW9YJGM0NV832MZPDsYpxZ/o827fdXxPK6t+EcWKzcEz3N9lm2Wz6n1vlt/d0cursyXXGQqjr6xPrR6267RiWetxBCIaChv6cah0/R1T1/DSFueICrNgq3ZiS7fVdOyf5cWkGNzAopJO9Z0A8K8IYBK7NYG4D0DpQ8/fgkk0Z7t/lWatux32+dtM7z3IxtwhU229RhgMTANWrtPeKsit2XO1PPUR3Haw08KvHr0yu6CewECOHgFrVZkCF8jl3I7IYN+mx3iGXg6TAM1mcS8BElHTmltLrwKaJQbeaxX7eQIw9DdjE5lU9ScIsWpY61WaqVlYRulpYByoqtirNgAwVPDF4kvpjt/OCzxxe41tvv4i30j0+zLf4lfNzHMuE+zyDiLGLBXfzGSlUvHxxg3giTK/lmEwAR6DcVkxvnWDOtXWJAijUQReQ0gjNVI8BBCCmitvDGc8PR+xjxrFMCGA8mU54lo54a7rHscw4l4ScVbOzaup3/mrQ+HL7RAOVhzzhtOzxmngY4IE+UJvRW+aA2WUGeb1E9JPMdhJFRagBgBi4Be4rXfN3CI6iDPDMxViEUGzVu0A1kBT4e1hnHNXen4hbrRNP4cukQ80J9NrQHagb1nnnWNO0pCB1i/yAZTbz1k5P0rkZ2LWK1ADWDfti+92KjU2P48HfZF4ijmmxDBdJwVVA6IzImviLJavgdpb0uH2UGkCvln3T/2SOTdjs2S4LOZ3VfK8BA9d4soAatSnbzd9Pu8eeibP3DCgHFqv5QBU7LUbojd7MJwUKjO21ltFTL7OKDKScS2qmbk2X4pmUK79fS0cH0MI6wDixy2cvJ+ztZuEI+ePKZz/iu9KuBkTQwkFbU7jHv9yPy5qCCtQ2STRw4fpS328dJsluk2/1atznAdNV9v3pceF/frXNf86Dlc1rHQTpD9VM+Bo7QzOQZ6Hs+7KzrVjYWJSrd4UYPtwE6L5q/11M2/jqNZvIdAVQI7VLNPAAYBChooqyUIshXwUrdsx2TjqexiD5RxaaJcpIsbbxVuz7CV702+sTMaBW+q5ROhK1z7T2Hcc9GWPN8BEt21D0gRYq6poWZohR2u1ohEakmU4+Q0bPh4lBgURqWfXWAFLFea7YzRlv7+/xjfsX+A3zV/B2fIM9LXiZD7iPO2APPJlOXVJQAziLVmS6R0tpBhHqHLDuZoS5SHsnKS/LROCJWsc3p92wF1+V/bxiP0lW5QenGxzXCbkEvH37gF9/9yG++eY97IJ4jt0ezjin2sLHC3wc7GvbPtFApTKhqG26sQJ+kAZ6GmquoVm6z0Fr0JioUR8SCxv5VOe+ZXiw0pH9+IBtwZIV+Rv0LnqOxyoT7JITlhyHkAPQi68ZTd/EkJUGShJAo5k9SLF9mDaBqKdM27nY8SZtm7ZKALWUVyuy19JdNytjC3kYS2QmZ55FSaE0cOLbqCjwy5qR5fe9TxlEEVOoeLo74el0at/bK5h6Np+w1ogHrXTtHXXlHCTbZgkR2cZMJ7a2dogbBmx7Pz0o8e9tmRTPuBlAmUJuNXoAAR1w4R5AQkveH0X20c8pqyFgAynOO8X3LwAXIMVrToyNa32rCVs/mo5tq223erQUV6+NaGfhJs++D8cWuL97ijE2oGJ7Eo9MknpeskoPwiw4hueaeFeA2YY52ez62oS+bQP73kUKsX7Onrvxe2O4R94fAcpwwGvAxn33MYbKf2kU7I6H6qe7AQvYAEayjA53He47BlbsvLqLaf/nxdhB0yCkzhYu9tWPrcDLjqdgxT4fg/he2Rg4TRl5jSq8DeKYGkRcGhPLBKxt0oSmhYbsIK4dWBGJNqgwDW1SlKVpNaUqqZg7gKjKotKYpk3fNWFy08ZkK/UBmCMuzxABbZHvc2CEVHGzW/DZw2v8H/MHeB4f8DSc8CLctH3fxgWfmle8yjt85XSHc05dT7JKiJADyQI0EwoD05ybM3OdvDsiNZFxmCpubqUG0S5llComm6+Oe9y/3oMfEl4/OWAtEU/SCSuLTf8UK3KR+5xSAfZfZ0AlUUUNUr4eTt9hk7tskjECdFFsIMYOeVjlyxYhhmA8TBKJSFOgK0Ls7E2ispnwXIhko2MpTM351bJYJLTRi/2xulSuGB/U6h4Qo+CNwgYUKMQy2P8HHRQMUfeHume/+Ik2aW0eO3dLeT2X5PQPY4G7ayzKLmb5GXJjHSz8Yd+zSdWyWIpb9QcFU0g95RsA3tndS5kEDjiWSbxaGiipyk7J/lIoEmICX5yz/NSMIMLmdflpx9y+7o+3DW15AJdCL8bY/FNIPrMiDoUEm/5EQWGuokNpvVeBdAONQ+rxmHLuQYuF0Txo37ILfvLw3iW2Mh8nCwwTjS1Cmx8HdSfWj2Jh7DwAoNbL1y9Aih3f9nkFrDQOQZ8LAfKX+/bhKcuQM/1MTwEeWSK30N7s7/rvVzed6KoV7XNt8JGbTnCmS7lmCDdm/1xnqEzkeRFiYhquzZ9Re721zea82Zbarh+49vX7C+Y3QpDZ3QPrBlw2l+76rO3Twk8VAGoYdHceqKdQkaYi+pg1NABt2TmWxQMAtVbJ1EEPv7AJrKkOINdE5dld11a/xUVCUe21FjLpafkN2FZqBnNkQEVBKaugtwa9+IDmhusrld/XHRaOeC8/xYt8g/fPty05xLYYKmgSz5UaCVSlLlNYxTfl9q0jvvXTX8L7p1u8Ou2w5IT9lHGYBFC8PO5xOk+IseL54YR3b14DAN4/3eLhPOPhzQ54MWH/QcR6H/Cl9ARfvnuCZ9Ox3ZtcxrHq426fbKASKyjmFpfnGgAV1Jnq3mduMIsqOlFEUhMw0a4A5ksBwDEOvXED8VBgz16zf6K47qzAoLpW0zabSE454eE8q3W/fxilyBpthJ9+FbLdDKRMUYRs/hOe9o8KALxjroEL2Y9MiJXFZdCDFS9E9XoNAwieRZlDbuEOAymeXSgcUIkGd1Rr60DcmBI5XxkSXq973MZFbOOVhbJQ1rmkfg82YZ8KuZazK2nQ3xe5+7VQz1CM0YFWz6r40Jb43PTBYQ4Zh7BgH1athq1tTpImX4LUcgIwVD2WIoTqjcIB3bSwOqF4z/IZHHrRXYntc74PembOh0k5sDrAjqtvWyVe6DAMKNCGgeAxE4bss7B+22kBG7At7NTB0eZG+MlqABqXoc/t8b4WQGCAv+3TJj5N1237xXUm5fH9jifmWSYKBJgnCWNs349gTdq+9TwIHXAZc+EPStQN7j7qfP0ht4xXfx0NnG5R2wBMDbCyCrJTQVDNnLB4vRK9+ek0q3Xu592B4+WxGrtC3VLAanr5NoixSr8OAh7KGiScEhkwnYmKZVPSQoXmQmv3Rc+vhe81dOGZFg+UuPSMohrdGE7ozImBEEYrdNhqC22ZM4KEe6baxL0UJNz0Js94WQ7ynCPgy+tTfLDc4IOTMCuvkySM368z1hJUwAvp2yDUGSh7sdk/zCve3b+BZQ0tOaFUmadiqLjbn/HWzRG7mJvb96lMbRzmEhDOAekBQA04f0rm1s/uXuE+7/BeuBXQWKTcSXn9dQZULF5olWpNaW8PiwlIp1iao6uIQyNOhduEsHVGNZHidjOQYhPIVlB1Kqk5f3ow4ycYBnBcJiw5DvVQgD5gb+lcW2n6jIgWDyWJlV5NxSTGpEBtn1bcTedRp2PMg2M5tgDFr9y3E3Zyf+9CVjZF2IMUKiIEvJiYVD5bJLOFeBj0DDi8PT8o+9BZl0XFWscy4U3etfvgGY45mNA3IMGYK53wcT1lGhivvZ0LOkj1jrx2zaJ9Kk3bZGEmAC3UtAsZO8rYk4TTZhJAPVHGyhETlQawG0hx5yF+PUlAkwK2bchnC1IGA0DHLOrcOExA1gbXxYx+tUtt9W2b1wz0zwGmcTBXWGICNm61IzBvewSwNXvr58Lud5uqPFgh4hb/9yFRb3Tlr2tb4bWFIkLfHytT9Oj2GBXhX24ox4Ee6jdkZCe2O9XPbtqOdJK2DBVJKaehYGD7rC0ogkpNmJuZ3Vdb1fZT535f2xvbmzQyMDVAMkaYMIVeM00KXPYxTJgvHXeqZGHFWHvqsQMr43iIFk5p95A8EFatXxTztkp1AAGeJbEQFU8izC+RJfVWQYEB+9anKqGsMjmThpOajqMEqZXDABcBvBQrKLK7Z8qi+E0N3EyoamwK5oo416YJseKpd7szdkFqhZ1oEqa2dnb6zWmHr+Rb5NUEQCzHVbE4VcZ6Rzh/qiI+WxFDxVfOt3jIsnguJeB8msRLhYC3n9/jN7z1Hj63f4kP1lt86fgEL897nNZePdqOkU7A6ZjwkGfcxROeT0c8nc94s9vhdAzgHEFfb+nJQKflI1VMsTSQYALRKRZs67MA6CLEPOt+VDGuwkxmuvDR8PqSKRZk7lkm55x09R6HzJwx80YmjLXERiNuTYhksB1XKn0ApyEljrBZBV2hhacg4ZibJEZoPqTlBbe2gt+ah23DKwAwq5GZfT+AW8XkiNpCHuYZ4jNeCo9skZ3HTid6C5O8KDc4lqkV2qsQtG8TrJm6WaipsnfTDahckTkNKdXbPjMIYS8m8UsWpYtocQFSkmOOul2+tLdpc65tXrsk5nbyt6Udy3FjY4jMBM+AyWMlBQZt02Ze2WYrmEbkYiUdeKAHxknw+vUMRmbEgLKcPUDTP+cZCgMGj4aO7LPDS5cMjj0fdr6dWYG71r75Z9C77DZ9yZXrkx25k7nGWFBvC7v69qzqiZDV76nU283AyXafPO6zAwNvoPc4+GhZO2Y378Dnts2H9ndAEbA+MS6uLjamZteeQ5CifzA9R++fQa33ZV8iRo3E4FhRrzy3wyH0+FqAWRcXYzVwIkaaLPto7A8WQrdzCKGCJsn0KSG2ey8OslHq9qiP0/Y8HpEnD+OxAHgIUNDKzIgApzpqg1x20DRn7OaMJ/sznu5OzSPqEFcc4oKHOrdswYc6t+vOCjTqMfXzKCLOXZ8CTITT5wqefOMrfOOzl43FnqNkEwVinNfUGP8YKl4sB/G3KmIdMej4koSVyh6IJyC+Cfg/v/xpzEH0oJ8+vMFnbl7hCw/P8MVXT/Dq/HXGqNhm4QdmauZktvo1sNHZEGorUmy8J8xwrWsNtpRqf0B8DR4Aze/Dm5I10zYNyRi7Yqlz17whmG2VtHXi7G6U5sDYNSxoXiA2sQ4iWf3XzcnUKAw+zNXbxqcfe0dd+z2Fgp3ur7FLGMM8BlS80NQ0GV5L0Zmnirsk3y8QavMhzy2sZPd0DrmVBhhZFW5+OiuHXqwPY6jDb/71a8xK61/uGP41HwuWdlAmiAQ4d+fZbn9vZm1Np6IGbiaWtbo9uTEl4hEDxqMgxVarW4DCQ/uO12+6J9s8WLkWghlW/7aC5p4l8ljohoEGVi5CRb697bMfsdLvuhU9ZrgE59uwz/Z6rpmuNZYBnpG4BEa2eSO2x0CK37+xIP7KRNMhH/Dg7uKgDDRre96+TUANYKpaD2lz3E1T+hRj07IMacyNsXVfcqGxi315ImiD6qqOc2uIiFm9RgYdFLemImItHDm+50M9dO3c7DM6rgLO6PPKvgbNjrZRKdRAkY2vMUkGzBjm6TWMAICSCoWDgW5/Ur6h9GdgtCrR1n8ig3ZS96cWCR1Z3SAzWQNkvH9794BP7d60MfZcE750foqz+lstNeL1sm91vMiOtwZQDqCFwBPj9GlGOVR85jd+gO/6hv+K33LzP/E/lk/hfxw/hQ+WG+zjirrvkYMKwjFP+OB4g195+QyAuIDPsTT38zIHHA8T8q1kFqUHwvlLN/j36/+BT7/1Gv+35+/h//7kl/FNN+/j/zN9A/7b8Qk+7vaJBireN6OljTE/yoZYBx2KsmmvscG/uMG9FM3EAZrniR/g/cRmfh8+HdlQu4jbRPlvxkDmK+BXWrb5eK2nPrcx5LIRlAEuGwny+j5mzLGHDgCMGTxe1wF+FEQY8DMdSkvpVvDjJ+1IvcpwB0KjiNQmaNMGRRJRbmXSdOJuu3+IK841IpG07S5kPJlOuPdhoOFejxkx2833GbtX26weD3alDUazOgsrbrcUqoZ+pL5PRG0AxQoLnuokGT4uxdjM20y83Bg/dLM6S0k2kGK1oAwUb03cfF+1lPamTXH9yECvgQ2z5DYX2mEj/YBnKggY0kjt9fYdm5Ovg5DODnTmsGthtshiPEZnIbwweAP0/eQVLu+ZZ1Gs7a6BJs/OXKtf87VsF4JWnYv5cdJtBCvb8yFoCrOd1zgxD9cHNLap7RiSxrxNc25taQeqoR/LgVPby8V9IcmaWdyiz7btczOEVqyfqpusP69Hm2cDescQ2Pa9DtKg+h0bi0PrR7rfSiLGJfT+CABBjUHtNUYvL2A29mz0CUBRwEedNPVXKFlgrpgOK272C47nCatay1MQ6/5aCWtWPylloleWbKbXeY8PzzfNGHMtNjaQioUraqpiZldFA1NvKujpgref3+Nbnn8Fn5le4Z34Bh+EO9ymM45lGtpVzCWjlC/JEcdTf3+KBTv9d5gy3isB6zEgvYkIZ8L0IqCc9vhyIby1P2J6WvBt+1/FWiOOzwv+80fe0cvtkw1UfM0Y8GB77ycdExlu2QPbmLt+xH/fBnazpDdxamcyDDCMGRJ25B4j9oOoU38DrUKpfHEcGLcpyHKuI9BCqCIIDxWTMg1bkJZrGEzNvNbBX4dnFWzwNYbA2js53xkfHmnGZgZg0FkDvxXHYtlE7Cf/yoRjkXDcHAoOccUUypBFFCFgoEbCfd5h5dAa3WfftCay/XtmhMdU4qufdz9N1No/M5YTCBrmugkLbuJZtSl1ACjDP83ukb9D80iRApC94KU4FycEcLfM5w6qvdOsMXmtr6AP1Kbj8J4qjw3u7fsO6LS+ahOWDs4tFAA3cfkVZlt1y4TYft8wOuNxlYVgNNbmMlXZHYvQMn7sTbPUHwrS6XWaZ8wFY2lhkdY+j5wgLs9nCIVsV9TUs/CG7wyfAZrh18XBBM1cLRqoYEKia87GffN1X1pge+39PQ9WbOxSnIIqRnOhsxi2861R3JAhVCG1dpJqUOjyPHw/hbHPFt7293nbLMP98+/YvbB+zVf6ez+HwlbfirR/67kVArKWDGAShmIy7xbu46M18vYcmfTY6MX6kpwPICETItasT2pgJ1Btlk+lBLw+7vE/8BbeO9519t/NV0vuFdFTqNilgjJpanSAhpgYvCt4953X+H+8+z/w2fkVAlX80voOXpabMWHCLeAWXTg1zQ/390lZ9l3MeDic8eGTCctZywUQQJlQHhJenfd4WQ74Tbsv4Rt3H+LV7dcG6v32iQYqlYOEO7SHJCqoGz8IX2TQzNr6CpQGsasfbAhoZa39RG4r2q32RGyzuTlXVgiSBvpqYtE06RC64ZDPePBpevYgtAG3reZ6KmlUk6MYuhbFzlnaRyY1n93iQcIWvPXr0QfJ9SdjECzMk0IHJiaaNS2KZbJs9SgN2GEj0nVPuAhtK55MJ0xUsXNFMgyInlsBx9jCI/48G/DQScxv2/CN1+E8+rnmqNtfu6ya3DObLORjBQYFmKQBqOQacK5TKyp4LgmnkppGqmWyaUE6u/biNClX7fDdNfiBWfQX1xkC2S4n5pbC6iYmCZHI56+xE3YSWw1DZVJHVf+56wzL5b6+ykcqDZWmiQCuG6t73cxrpa+q+2RJrLoR8OW5bs6p/XoF3Mk5KEsFySSp4aIrOgbp8nXZiVvFe7DitT5A18Fc6QOA6jeqMWWX4RM530vmov9tDq+yyvd1jAaw5X71+7JsGUDArn+OtkJt62vBgUY7zhZsPLZZm47C6s5w2zYsBHMYQQcJq4GpKlPCjTm8aKMg7AlzkBk1bcGkfjYAzJoAEUUPw0w4n5O402r9HA4MDr2PrmvEi3KDV66sBRFjSuWi+OxaItaC1t6IAlB4IoSdSAbu8w5fpif45fNbOJYJr9cd3qw7PKyzlEDQxW7TEhHj+eGE54fTcFmlBjF6UyJgf7dgnSvyGoTJyQG0ExbpZT5g5YQn4YjfeMj4uNsnGqgENRKzzYsg5e/HTayMFu+siE/BBZjE5bC4z1/TORhdKHoJG9AZ3qStMTqtiFNfco5ApT9M12KxPpvBuyBG/WfZTaYdyVfYBduXD/FcaBlCXzXYxG9hNgMPltliOhQDPMWxB9fazY5p7xvoyRprNYblSTq1z/vv+no3ATwY/W3DM+Y9ck1j0v7egDH52bU84i5bBhNAMwa0bRfWFvIxvxirgOzByanKQ72ygCxzmbX6RqeSwCyuxdvz9BlCeWBTOkOyvdfb1fMgFsU48G+zKsYd6X42QsKros/t68qKwADOI5Nzd17dvK/7sv7/WJilpZUCgrCjHmuzKzTmpTM27VS5UzfyXPrwyVcHTMP5cL8v/ryMPGFyqbC28if/fYy6lSv7NvbGwIrpYFrz233nzqixm2wfC6lsmYwxJITGUAAQIMYjCBuZNXJt3hd4wR0/EqNqm0DP36/a7b6XGlpGmW+Hy/O/fC2QhF98/4k6fsrfSQSnLmUeUwVUjFtrGO6Xb18LhxKheZ1ca1MACFE+H1NBSuLh0p4rA/52GOqZbO0cuC86LC19jlIqZC1BChueJ0mTZkjW0STAaJozmAlfOD7Fe+c7vF52eHPe4ZyjuPnmgBjFMG+XSpMRSJhHEjICMR7yjId1xklDQrbon6eMw24B0GuKhVDxZD7jWGb8yvoWHuqM99evs6wfq/ILyAB+kb2BcQKWeCs1Yei2UF0XrErH8HoV4MpK5coKJCjAMXRbaw/3dHDhVutKh5rIlmg8B9uvN+EChE3ZTxm7JCxKt62vTXBpE/W1cx5ExJt2sNRu/50USgMCKQiD4sWyvsbO6sS4RRL3L1xphYFYURBkcg8SkkqOpbEJPipzIeyDFfEbV9HXQKTfLoWvI3i5qmVRJsXCTqN5XG0MUwoVe2V+zA7fNg9UTHvjQz2ZA5aScMxTA5Zb4Chp1n3S8SDFhyFt1dnu4yNtMoQpryyJr4U92sBMfTC9eCDaREM9DNF24Pa53XdbwV5m6dixtvzGoyEBJnDV1et2ta7nZNHWbfiJAcCzpdeAE2TfdmyZqGmzkysbaygh4DK8o5NfvwXc2svrhprJmrZJm3QdWHmsbIEdws7brn9ru+9BCnCdZeF2blcyxTywKEHCfSwhjQpd6SsT7Mfb6PY1au64re5j4EEHaOB3BNzjedsxgr+nbRFm11DBqQCIKKidUfEsE4v5GrsQzUUDw92roVH0R5DwGahXZA6BUDV1iSILmP0IANmeW81GOhMPdZWkurFY5hsrRAEIUVK/lxzxlYdbWGbPkqN62vQQa1brjBikZtNSIk4h4c2yA0MiA6c1IWvlbEsrNz+vORbskniu3KQFt3FBoIpfOb+FF/kGv/Rqd/X6Pmr7RAMVEztmnXi2E65f6W9f853XVuX20/QpfuCXSVc2T2cb88BKwWcObfK37B7v72A/IzGSmrQBEFOezWbCQKtFYk9DjIzdtOJ2XlrxQECOHSBpvAZS/PkbW2J/+wnRHo3K1MJpjUmhHvZpbcFBGA0A2zo2fms6GE2xNY7KdCYGauR+VtzFc8veOeeEY5kuGJKt9403W2sOt5AsoKCfHcJLuGTbtmyKgUdAsohMRhbALTy13SoID3UeXvNmblZQ0Nx1lxJxKpNkjGkWmW83vvJ7M8yqY1FB4HKF+VE0OREPVLhn6+SXEWTYe9tVvl+htomQurHZuE93XtfAipuE+3mihUAGwak+oybwbIO4Ds7bzeteLAwzrIp1n1uwZ2Dl4nyAqyAG233afvWamQXoXJyjYy5AGNrc72fwXKGx/YdDuuvpAOXSE8cXN2yv8ahbuexHXj/iKziPQAVAM3az4pTS5yI4qmYF/TuPTdDmpi3MUPeBsfFrvGebBARg0JQAwNZ3qjHHQdKit8wjkdyvUCFaP+IRqDSQedmWDaQFEoyqJnO1kjAfJWjGj3q3RC/mFbBRVAsmXjn9XuZVqkeHkFwVZ+qeKUTtvKy4Yq5BDN185inQzO98YUsbX2plrFqnjoHGvlRL5pg6KLSFlDG/S4lYygHvn29l3MsTXr356EXlte2TDVQ2q/nHUkwfYxXMxdbeJ7qslVMdQzIgc92voftcQhPa2orDUKoBFGNPplRaJWBjdkidcm0AlXz98WGyFc+kqWG+Po0Juzw48efp/11jH+wb2/Tmx7bKhFXN+H2YxxuXBWIcwtoEslJgsKeL22fPdUIFSUkCwDEQk6TegVpmUADjLi0KGMIAOHzYB1Cwgu7O215nxrniQtsi1xAGsGKvre7vayDFpx97kfKqDJDV6LGfS4l4yFJd1IujW9vYQOyux+jvayBlu11bnfrX5T04Z9b+GrAxPKMepmD7TPu8TJh+cmjH8KwLu2MzcDGZAwJEjD2xfVo/JA1/OSA1mJFxn/zJ1Y0ZgVz/bgM/w3VjYDLs2q8V7OuN6FiVR9kU1xBswEpBQPtM3x8AWCrrNqX7Yp+PYNGukRlf21rdX2ZqjcaSfl/ymUtxswcocQNUANGk+WwyvUD90Ut6GMux3ao9+22hFVBqZ8R8dqWY3/XUXhvLYvBAxbHmNSCQavBiVfbbxNb9euUEWcqg2Am758P+rkytDwnzAlBVx9rIiKEgxop1jciqS2GG3GvN9jG2yQOwUGUBEBSwMEnVbzChFtIK0gpuNPRpqc4h1A48jDFxNZmM4UlJ5qRrobXt3ELUZQ/2WZM45BJwooT7MLcIwzlHrGuSdPCHUevytWyfaKAidP706PueTfFgJPhlhp/YNpOzNXz73gb1cw3IJTSkaRTaln5v/yC2/0aNGcJlJnGQnRgLCegx5mN7/BQL9prHbqmzFYSIEaS1iRdtSGgT4DYd11+zBz9+M12G6S4eAzxeMNtq/FAHMf6YLTSEDjrPNYmviE7qtnmdyG08Y6KCN2XXTNIqB0xUcZvOLWxkQCHA0qJJRLEhA5j1fDswMdAzAFUNH4YNaBgKBtaArOnWvh3s3OxavKGesSuWYgyM7N32vv9f3b4W8aF9zsR7ftXWWAcPONzn+/ehk7b7e3vaDqBc036QBue5uayO5yKf75Nsc3xtK9px0qz+WAMzsTknGNDZhJ70NfnOR9wDAyug4TjDZO4PysY6uetz5zJobR4BdX4TQCKgpQMfGna1BSz+1auaH72/tPkOEzfTMx/Ots/68S65v/0CrpVn2IAVuWcj48Gb6wgkLq9MqslhY6yrO4Yx0TL+2fPcqi2jjz8ItWkpUANqFFFsKx8B1z9DX3AO/VYbya5LMniCSg3Qnh8rdFiMVU9FhLOsgCb2fatoZ+y22i4p9WegWV2043XAQy28JCCmlS1wTL+BVwOZ0ekngZ7RCusPJNot0n7gowSAMtoKkKsTtBOkIGEIhPURHc9HbZ9ooGJZP8ClRuHapN027eDBHsPQJwSfEeQzfLYgxR+nMvU6EC7UY52ux0T1xkHQ7cqEVR/6SdPyYqiSC49xAGGWlcJ+yni260JTZrpw3vVgzK6JmITz3mxbBf4WrG2vddWHuLu0Pt7uKyICM/ZhxSGuA/NiW0SFm98bI7ELK0L7fGj+LU37QgJ6AvOgVdm6wMr5VfiKyV0kC1SuroJxGUJHVk4AgIAkNjBbm++LXb8xJ3LM2nQ0VmTQO/42DxTHinDrd/3c22rOxvNNW1+Zb9v3+u/DVy4AhqzCLHV4AwaAQaTqBZRD6MLeL4SqIlbPoAxZKgY+2gR07T20cI4N1heMhZ0uu0le2QIfirrWk5v/yOa6hsan/ll/vtvNh6ZQFayoLqNNZty9Sto5aCpyY4EeCyNdPeh1YAHuYSrvdkrbzzRQd91K38JwFkrzDtaEDgouvofeljKBqXUCcWcIFaDY7zLpjVlLFYyoYxeF2tkUOwdSzyzqLLfff20LTBlbAhPIrA30uwBaMVth1qMyFhUxAkQBluXE+pxSIXBlIIlGMMY+Zlu7Wcg/Z4BUn2chS64kDvpZ7PdjZIRpbfMG0ENujA7sAB26i7Tdtv0psFR/djW72vPZwKH9rmNdrI1JaUBL2RDTBclzJOyVXWMDnYFQubbH7kL7qOcWtL8kQkv6eLN+lGnQ9e0TDVRsa9kb7tlp2R40Zp4M2S32MFcgo7vJehGtCZWskxuAkRvSH05PiTVg4qzu5SZxKxxoefB+FQ393Jw6wgXkGEtOIlYKV0DJ5tra627h5NvAT1RjxoyuPFQgmqhijnnQd1QOiFSUaYitzpJNzu1zoPaeiWG359iu2YELY112IeNAK45lagX87PMrd9+AQBUTJEQXqOJc01WgZbWE5PsdUEyBW1jJgIW1CxhDtk9vq/53RPdKMdYmakfMNYoWRb1Rrtneb8OS1peIhDKNStt6hoBImDVv5+0Hh76vcb8fuTE10NBWkwPgIVipeGM8/Krymv6hRzu21zge1zY/uMJ2RTyAiuFY9veVbCZbEPSdo4EnQj/Pq+2y+awBG2AMlVy7hr4PB0A2YKy9Xt11k6EnB8oeu2V2vO24x63Jm7B2C2aJuxD2ozavTTGb+vYecNm+usm4a/tgHfMKko6XtQaUWIcxs6phnVVEtnYi9YYaWF4dN01PKAdTNgQA09hnmdXssIQWOgr+OVImhYOMX6TXbunRIRDyShIqMaxcCFZfabuA9cZ2pQCF46itYmE2AjOIiqss3TN62LJErVAha5gzEYCCWmMDwAJ4ZIzgnLqI1oF8ebMndQRlW2L00gEPNHvBR2vjC60Uemar3WdrcwtNdwkBGvCRufBrReR9+0QDlcHwjbpGY/iMAyu2DZlAm9/939aRW6aFARlnsOW3gQalDlKC3sgUe32ctgJwIKE9kKpdiVoHI3NoAKWtBtzDYcyKj8F2Eau7PlyGt/y+oiu0aCAlaQr41k2yC01jAwEXjpMaNjHwMIDEzTXYdXjQcqMViB/KjHNNDbBsNSLbsuY+/DReZ1Wg1cGJVWiWAVbS8+y9tcYG0uQ+VVRleaz4IgCslRr4MU3NqrbWi5q4XXOT9Zunum2Q6NeDzv5tvuMFhX7bsgXXV872z5gP/7pRCpffoarHc+fcfl5QODrrk//bfsflZOzBju5vSD1u52Egoh97C1Ye2wZmgbi5rV7T9XQAdnmu19OsL0NA1z7v29F0CcWLVsj/3ABA2xebfoKvnts2A4aANon1+dxn3/Tx69r2GHu6/bQHK0DX/TF6LaqizEfRCdQ2f3yb7FADJsts0XHE+r6EgrpeaWwDUlZEJPxFQxFWeb3pP9w4z1wHhoYZiKkKa1F7v2w+JamgqoO5bVZ6JWgtp1pS6z8GQitDQ409dLWdT+xYTQheGUzdkE6uEW0fFFhDitIfiJSRUg8cuwYLYVl7t7YHXLo2hvYxCw6/BVDzxUlOeygLMrdfN97Lgv/rjFFJqCBLG3WDv/x+3UOlZbtAOvF2s8Zm9/nCpAWabP+XA+FWgGYdwSNuu1FegzApeNmlPKze7diArOq3K/stUGlt4tx5t9dlneQx0bF1tkQ+3VkzlFzn6noVUuZE24VGHxM5t4BCDHB9FKA0cEIYxKj7sDbDNAE7HaS1tqGxurHvAx+1tbg1TDgLFDI/HAvHjdlEE1VUuuxXpt2x0Jj5oiyapVS4G7StLmvHYvGdbdK/gTYIj8cBrokNr00rW4AydvXr4GXQA3AXhI8fsoHTzQtMjfkQXYcHSn11L4feTCiPTIrtfJ1lO9AnskELtgERV/d4geQ2L9k+uDM0FxO24ZXHupYBA9OLtNo2m2va7rNIVojtw0Yf3rbTI2CT9MQZI1gb08ltfBoXVFvR/nA5m7Fr2x7+SXjseWv3SRdtljxQ9FyJqbEXtuoeV+cSmoksdcfsibSFV1/RAxI00vPZpA8z+rjNNC6a7J99l5mk+rP6tgCqd6k9U8bYj1KCZPG46+9zQEWMAZxqc571LGOtAeuKBmgkvM9AKHr+UUNigIVtui5mBCsAmniWFKx4Vr8Zh4brWWLWRnaM7XwGXJY+sO0iJE09pdy/JmxKxS59nRm+VRDIGZsJmhur/m5t8y07w79n7/uB2rJ5jII3Y63QBh35JSpqte95FDqncolY3YNhD/8cRFxrq3sArdCUT5nebjYx+zpE9rpcH5obL9AFq4+xKgZQjFHpWoz+uwcpAJqfSbRVp3C4G7BCAAUEdBZiu1lKsteFvCwHAMCpToMQF0C36yceQ0voZnL+2uw8pAxABykDwOGqadRmj48W0pm0DaZQBjbJwJqBFKvRY5vFrY1J8X1paB88xnpYX7XaK5eTmM6v7XXPpmzBhkxOXTh7VXRp39syGQ2M0FDzRb63YU7a8ezE+rG225BhY5OrnZdlvtgqz0/G18dNfc8BtC3gsr+t4fyEbu8/EncZAzkWItlexyUo2f49ZBkVWTQRXbaf7U+u2dila2h1cw3D9z1bMgKQx3QqnhH2f49A2QHsTR+mzfPf6nkF6cFmxxBVzGqbZeAAaOOqheT7Z3q4uiULEEO0LwzLDJLzQTuvWgNqUAGuuwpjsysTqp6PZbUUpqGNRjYKGk7hi2esZXlqeKUUEkv7bWhG/WXGtteFLst1cEUHDzrfXLBlJFk7rCZw3gNmvO+1jQsjg9NN9YCKGHDhIgyggU27L/5n0/fZefrFBPq8Y+zYx9k+0UAFcGJWBSkGWqwwn/+MrWxt29LFAAb2xFa3PRYqWyQghjLcxG2mhjElgbg5idp7gRgTcdOCzEGrUWqxv8KEkxaIWty5pSuU2bV6NUM4C+iGhx4kbUb5FEbTOLOMN1ah1e/x4K6BQOncIFzs194PDlhcvk8DaLRzX2scfFa2709ULs5vRQ/XbCu9abX5IY7cqEpn6/+YRwpcAUUAQzaPgJUwXI/XoxhI6UBWT7E97Nu/3QPuzmMUyrr7zNfDPx64yGZ/u/0ADZwgGICxN6+wHwYkDKwMq7vNLG2fvTa5+pfIWAgDPf3YZhxvn2tt4BFaOwEHUHDtff85x1LwZmfX5nxCCzk19uXiM3YjrwOdRz+7BVN6vGF8IhiSbO1hq3vbndfr2G025u6x0M7gO+JW4bbZgiqGManAs8P95+PokQGs1UqXdPBttdSGRR3xEC4qTC0ZwPr6FsC0a3Dg4tIjprM0HvDY9UTiQVzrSynI+X206LmHTYBu9CkpxUgFtYmn0cIyJo7dskASEixg1a8w62QfRiDihbgxFncOm/0Z8LSFGUwge9lGlbm1k91fQIAl13Dx6LWuCbSxztrU5p3ChJIT8vp4pu5j2+Me81e2n/iJn8B3fMd34MmTJ3j33XfxAz/wA/iv//W/Dp85nU74kR/5Ebzzzju4u7vDD/3QD+FLX/rS8Jn/+T//J77/+78fNzc3ePfdd/GX/tJfQs4fnw5qF+FW07Zdm/z8yrUBEUX5Fle0/cUgacQt3mir9yCWwvuUcZhW7FNu/w7TioMasd1NCw5pbSlx/mGYQrckvpvOuJvOuI0LdprZMpHUW5hjbgxH/74ACXGKFWCRSMCOn4DtWCl0i/3tfgSc9OPMaot/iCt2UX6fQ27+JjYZZycc7W27qTw9IOktYKjDP+nE4qRbeGROPGti/zybEsDYUW51doBRnOvvr13bPqytqrH5tSzmegtq7rf2t+mTvG/LuSYVyiaca08xtsrHS4kNrFi4Rx74y/7bKOlHJre6eW/72ZHBGd9vrAmrSK+6169tNri7kWiYDLen2EbxRyZ5AkgzDC4EeY8wAKPYFp3hYQg4MiC1ZS0cLW/vX4SIGsjpIMXYo4Gt2N4LBRMX17i5Jms6a0Pfdh+5tXtEHdi58+ISekjKxLeb1X3zumkppb3t2nVyz4oZWYIRpETq+rouih3HQgJaFs0US3Mmlc9251c5dl9QenDRj1svPm8Tnk9yKAocSg2uYv14LU246UBVP34HKx7wAL3y/BTEZTWp22oKVcw546V+ox1T3x8L0I5ZNjEK65FSQUwFMbI6utaL74++PiK8ZtX1WHpxS4VmEftKtpE4zXZDtz7P2b1K6uE1p9JMR/384K8xl4i1iA3HmqO62UrR1FX/Wfain19KpWbdYX0Fet/W8vH5kY/1jZ/7uZ/Dj/zIj+A7vuM7kHPGj/3Yj+G7v/u78Z/+03/C7e0tAOAv/IW/gH/yT/4J/uE//Id49uwZfvRHfxQ/+IM/iH/1r/6VnGgp+P7v/3589rOfxb/+1/8aX/jCF/DH/tgfwzRN+Bt/42987AsA0NxTExVkPF5HoE2AG1bBC7MmZ/hmN6/V69H9ROJWV+daUTvr8ABARRkBzeCYQsE+ZswxS8gnZOw2mTUxjpk8uUb4VGBbCdjqv03azBJ6oNHYzc5z216+Y1lV5NQqFV+Ors2DpbW3nN81p9dtheVt2rCdx3BeV44ZoX7o6JlLjU1RcOLrDAlYEddcn1UUSNKkJypiHBbE+dbSh/s5KFXr2KKB3aAe/vLAxYCxeKSIM7ANhsM165+P6U0eo+JHgWJ/DbhCGrjJiahPUMac0Oaz8hONIbjmrukP1NNuAYQ+KbfP6N9d1CdvDG6eTJsUZwcEroCJfr5Xvjt8oF/XRSzewNfHYTuu7N/CT12EzO36jZYXseVXOc4j58GuHXyKMxhi5EX9eCAGbdq1najdthrAVHu4T8+6/UZ9cmwgxdgFoDEpfsLxW6uIDHQWgi9DGu3z5l2CDty3ei0AAwPp/Z8MuPsQqrEzfvV/0a7QcEeoCOjaGduCsikWxpJziYBWjg5tvwG12rPDTadiQIY2xwTksyGUi2fTarUFJhTqwmIRAasbbIUAVTYORJyh+q3Wa9b06ao6FA+aej26/mxY+ri1v5xTvwcDaKyhsWUm7vdaTaIwjGdWqNfuo98e08h81EZ8TVH6NW7vvfce3n33Xfzcz/0cfu/v/b14+fIlPv3pT+Onf/qn8Uf+yB8BAPyX//Jf8G3f9m34/Oc/j9/1u34X/uk//af4Q3/oD+FXf/VX8ZnPfAYA8JM/+ZP4K3/lr+C9997DPM8fdUgAwKtXr/Ds2TP8v/7F/xPhdt8mjqVGTfnc2LijpxR7hGlbqUbd2+TUO6qf5M2crTEx+vCbRiRQB0wmGjuVafDimEPBPq3KXihQsToxg6up2Kwfi9SAsfPx2hurbzQ70ee2DbZeJ3aePjQm5611baKwKNuUYX9evl23mhVjjLzPSoSuVBzr8bVs19xebX8+5OPBjln4m3W9gRorGDiFjHOd8LrscZ93OJZpsOQXr5YuFJZ99nCPb3+7rwAGn5RTETGthfw8Nd5WW1s24OL9ERx54Gn3EcCgi/KruCHsY6uyxxq6fQ4D4LBVfDuQDj7XnElbfFE/R2ZWZrtTVsBvV63unS6G4mjPLteIDlT8gLdZjV/uuF9re4k3+3XH2e77ovE2hyDiZtgFoNVcgbMpb8d3K+aL0fcjQJq9boLJfh1XQB4AeOMvx8BsdRZ2/kFZk+6hobuh7oFhLAtwubAwxsRYiscSDmzxtw2X9+P1RZpdnwf2WwbSf/fa4mDQSehC1JiELdvQjzcCJNOWWaaSsRbCdkh/TKmzMH7S9hmi2xCtgUIAruyKM2bjUYRLQa7BP4etrzEGN1ofVtqyZzHWxhT58EyDYptF8TVWuDabjvE+WLHHbRpyu68PJ/z8D/2/8fLlSzx9+hRfy/b/l0bl5cuXAIC3334bAPDzP//zWNcV3/Vd39U+863f+q349b/+1zeg8vnPfx7f/u3f3kAKAHzP93wP/uyf/bP4j//xP+K3/bbfdnGc8/mM8/nc/n716hUAcSulkJVF8A3bCw5WrUkzh9L0K/4meM3KNQaCSCoGA2jpwrZ55sRAhE3O5j5qDISJZvdJzM8szGLshWho+nkEKjjo78cyqe6mNKZi5YCkTIPfh22Gfn2IxItqtym93lTJt0dlUmAwTpIGHgICsGFsfGHBIXTjagKNx7Z1Ao+fUXbEqsx50Ww7lytrvK2ouCDgXBNWiogsjrDnKpWLPRiZHIhqnihuZelfv6gVhN5+NtD5WK1tHlRsN09Vh83rwV1X29cj+3ls//LGFYbCdrb5fgMvrXYIZIEZ+ZINqR0UtQwTl9LpK8/Km9ZWj4eTLkJFbhK/yCZqn9us2Pgj2mK7sUhlvSj28c+Ox2SWNrL09Qsg51/jrSS3v36xWZdsb8lxmNCulRxIHPRF9lolqW9k9ybIG1tBpl2WB83ygW4a6cfOLTBsz9sVALHdrE9fY678oq8/y/YeLgDKFuRsnwsD/01AGmovsK3PKdRPZbtZCKwLdPVzUZizWgmVqIXUVn32TTJgAuQQK7zo2G8tzOVDNo7Bp6AhRQWb3qRNwpa2I30GK8AI4Mbg2AIGIP1ireLCW2oHKtv7aeE+AA2otUWXa59rbubMhDWHBlgsRT0Qo/5aimlrrfjzf/7P4/f8nt+D3/ybfzMA4Itf/CLmecbz58+Hz37mM5/BF7/4xfYZD1LsfXvv2vYTP/ET+PEf//GL1xtbEApyjbKS57oJfzi9AtyD5tiESnwhOLUO1TQibiXd9ze6sw7hGl3RAx3QzMpWeKAyDfoPAij0zJjQNSnmzmqAI3nAtAEiADoL4yZQH4qZrjAbonkpA8CwzWfrFFJvahKRrF1z3w83HQnQQy/FhUn8Z3vIprcr1JulWLuypUpvdDhuVG6gA2ED2kjULbVTx5V77SDQqKnp13xpVOdFs37//hzsXl4Tvtr2WIjHv3dtoB/moK8yAV+wKbxd3V/upx3TQIcOfP+/9t425rqsrA//rbXPue9nZmBmRBwGZECqVjMFbIuKT02tCQSqpK0NH4w1FlujgQ5EqjGKpcXaWIxN+vaP5UtT/FJK2kakoWhEECwtglIob+1UjS20YaCtgYGZee77nL2u/4e1rmv9rmuvfe7nmYSZuZlzJfd9ztl77fW2917Xb12v9j0BQgtll8akXq4xUWtqIY0YXK/HEos5CIgEqcZq3p2wi5Pi4624ueFLE80Xg5U1iYc/WMdben9NykH30IK/xTqGEqDU70GShXRKVWoWfC+3eoXun85JbK4kSIJjeM6Wo5XL7biK+vmcMmPQ7+sl2yzyBoAAfLRRA72Dk0oRaD6yG0MFEjPWNwM2Tn7uFfys9DknH7p/AqpXDLktc3TyMqVqd9KuW0jAaNwKrFJCs1PpoTOiWo5VchqDJmfBtEnD93jhpm02LWgJDbN7Blg1ZfYzTSoTc9nVwHHFvFttg0a2Oaoei/N4o/Swgco999yDj33sY3jve9/7cKu4bnrNa16DH/uxH7Pf999/P+666y4Uydi0RaLoy9y+LxjMSlwVVYNE0TpLV06m/aC+jvqjjcq+2UhYHbngyrTDlWmHJ2zOcVM+N2mK0g5TBUXSr9ui5snRcnpcAZBJYpAtv80uNXsW2uVwbJOo7tG5qSHlK3Da5GLgwgLMNSBUE8MVlNQlQFVaAqpXFjYprF8eHQfIswZdyjKl4gxsI6ix69BVRSPSedqVpqpCnx8FLToXbIfT52gydY/zqpJum7Jvaje2Z1KKoCOjuhoPgzwNrpOwkC74Jy0w3aDULywjqYljhqOKE4CpvVuB8faKQj2NmaSytuwHoKB9jWH5U69TZl6EV/oRup2SQHJfLOW6+5OaEC9OWHJlHQBQEHcBw64x3YIR7OJmxt8KVnjRb4BK74s+H233rcB0Oc7+HPl4GfSsgZ4zrSOJpRMxxkuRZOPGYNHeYG3l3qmHT8FyDlmloGBJAyAW6WVyEuRJsAO6nYzeMwcYK3EsI6s3ySpY0XamXCXW2ka1S0oAupGyqnD2A6mPV8NQ/0m1pgbM3C6raGr/M3atHZ13BT2aSmCeEz23/l7EZzCuRaVk7NHvpwKlTS4mKWHvVlP9TUuPLJGEfQM7ZV63I12jhwVUXvnKV+Jtb3sbfuu3fgtPf/rT7fidd96J8/NzfO5zn3NSlc985jO48847rcwHPvABV596BWmZSKenpzg9PV0cLwAxnB41tEoGEvZY7uDte2oqkJY0L+4OdMdw0rxr1G24nmd1UfEIt6maNrmGmd+k2VyPb5p2BlK2eWyv4VQZTbVzJe+cWmSXq7Hmad47Wwl9MCaVErW+jcAJqzOmVCU1pyTlmVJZSiuaOqYM4pQYuApxUjimyRwXYMC8b4DsDGNBc7xm1zI3UGN9pPs8NgaGgRRW37A0ynmLST27Riq1UjWfBnUDOqOMKpz48urioj2PrsgqOlbR9KqhoPQFqgKQYJciAyYq6F4mJOEA0Jl60s4FIGOgpAITsGqnAQwTSTPDN0BEc0yMdmGJ6H63NvNSTJ24XmWkiZh2Sn0ca2CC61DwdT0UpR6j6t1ul9rS8gQInDgqPscKVvQaA6Ue/KR2rTP6DXUpoHXXBSlHZ4qUe6nl2ImSgl7vKEJ4r9+M3AfX5iQLI1z3LidxICTb+t83VaUB8yI9eCLo0/UTYpssAM4Gh+dB+96UP7XdJAZYVB0EoHviFEDzEQHJgRKWkpihcupZnlVVomNjVdvCvlIlGQqSSvXSOd8D89w3VpDuNTZRvBXts2ZS9xHWe5/V9mSr9i3NbomT4ypA2ZeMPM0uHpn2/eEY094QUBERvOpVr8Jb3vIWvPvd78aznvUsd/55z3settst3vnOd+KlL30pAODee+/FJz/5SVy9ehUAcPXqVfzcz/0cPvvZz+KOO+4AALzjHe/ArbfeirvvvvuGOq8Pv+ZoiQaO/oGrqgTvZVIWAc6U9mVqHjBdtWH10Y3RnXexxb5ggyoW07gkp3nvvGnMnoXUSQZC2GupqTvUw6WqU1RyssG2SVp2aWOA4DxvUObkQIrao3AiPV5IVIpyJe9wmvbNZVgT60Xj2S7NmaTb5yhAsXGUiWKTLAFEF//mBVjx91hsntl+ZS2+CrD0MNJQ+poAcV8mzGw8jf7pVEC0geVzOckyyGB7QWNcG42CyQZth4glTzlViUuequumhgl3m3+huBm04+f2LOhbZKTcH7Ul0X8kHWEjWquP1A+Osc/MSKkNzuNjne/za9c2TyEjapdtX7pqRgzQuEBckpw9gBr8VgBGcVkCqcRDq467To3sOjSCXVuA431PfoxJM9bq/WIwRc/g0h5n3J7hRQVrK+VG6jMz6G6/1VNEz9XhKOPtAeCWIMhXroHTwOAHYwnGSPIK9CkzdQo94yYlQPcq6gBEwZquPb2PJm0M/We7i9ze89TGzsHteu6k2bIJ64bB+h0BCrAAJtGgVYEXmxWwl6qSOhWY40EDCZupp0WYZ02u2HMDbTaz6wcnSGVjWO1HQk8NoI4YLN1Ru8xcJQAAYAl3FeQosMFmt7i3F9ENAZV77rkHb3rTm/DWt74VT3ziE82m5LbbbsNNN92E2267DT/0Qz+EH/uxH8OTnvQk3HrrrXjVq16Fq1ev4tu+7dsAAC960Ytw99134wd+4AfwC7/wC7jvvvvw2te+Fvfcc89QanKICjpIsaig9NgrIynixf3DuqSKAU9buPqzga/3wtgUXWrB0hbOyLtp0Uwzut2Gxg/hehisKCDQstVrZYcraWd92OUOaHZpxk4mTC0pHwDkQkn7WswUAOaBo2MGqmpJXXetzjJ+NFjVVAYrnQKZEUiZ1TDWzXl/0EdGtQCApu6xV8kkLyP3X78j1DGrdErVVhMSymBB5DxAgAco7A3EIEU9fthzbAnIvDRFjQJH/XW688SL09j1cgSA2iZ7KBXoIv4gORA0w1kFKQE4JGKgrWwFNqnbp9RJq9dp3VqvflfwA/j6IqjBQPpgJ6Sfd9KI/pvzv5i6pnkj9VgryeqJLt1MrFazdkfEwCL0dQFmFnNB7V+Maa1ubzxc29D7YrcuBHEzaZ2Fq0cPs06NDx+hVi9LP1Ja1g86Z30DTCKj0gnAg5N4bVwnALVX8fYOic5roDKeJ90wmGHuyHaJvusGtpbt0gJb19o8a72Ks+v37CWl9B6bKit3MBLLxfVD151MzzQDl7o+pmZTkm1+NlPBfta0HdWbSG1nNHZNjcrb19sp92SQCkpiHK4RqQlFEl+OQc5IYnY9dENA5Q1veAMA4Du/8zvd8Te+8Y34wR/8QQDAP/pH/wg5Z7z0pS/F2dkZXvziF+Of/bN/ZmWnacLb3vY2vOIVr8DVq1dxyy234GUvexl+9md/9oY7r8v+moGj7XaJsQBLZsaGYds845bpDJs046H5xKQs3eq8u/1GtQoAsAeMN16dzUV3FL3V5icVTOjMuqpkKkhRMLFNe+ykSlGcxCNlnOY9ZmQL0sZtq90JG/DOkq1etlkZxYeJxMAm2m3wMSYFOXzdlGBjZYBieXyCCip6DSnlA4uaiUdJuZIp5oobR2KbHB9xliUpGvxO3daZWO1jgKmpb7qb39IuagRS5qLxNIiBHOJkJOGwcsqU7TlFPx4/pRWwRbF+ChvVMvhQZhsZpvs+kga0NlygtdjPKqpmiVAMq78qWXDxRbTd1ixa8kCrdBnFlPtak8IFQLQoN+oEXRNBymherOygYptrNjymKoWAW+reL3XIBOywlIBYS0EioIBm5JJeUlctsaQAwHCt1WexoDNs3bX74JEURoL6KliuKdymSSWkes2YM8zgncqpSkbm0ttU4JRQpShIQSVM9YwAk85FteWZV1VunH2dJShx7dSxs/pk1Ie4TrNtJFDXnf08YT+HtblJa1MSS3rLoIIlJ9dDrC3Yt83lltZLkdQCxH2JbVSuJ+TKlStX8Iu/+Iv4xV/8xdUyz3zmM/H2t7/9RppeJQYOQHZMSe0GLrq5ipy3zetFVTR7tXlhRkbXb0gtxMHXACxcaTXc+8hLhSlDsM17TCqtgWCbqsSjg5U9ZtnhmmwtD46qfrZ5xim6kW6RZG0r4x/l29G2ZgJZrGphlQ8nGAS6weuIGBh03bRfXByzJnWY9mukhuL6rF/0yYAn2tQcsjEC8oJ3sIpoBH5FkpOmrFECLbrio2LaIkvHdIFS/qRtReKYKSzOduoeYffhrhZoXBvWUIYHM0moAwFMMKiwsmnJe7UcS2eMgSNc2zgib4aroUF3cRZiylxXmJMhzuZtLvi7dGkIg5ZEx0P9yryHAMeBylBnLNfG3qU+QDID5gY6FDwCDqSkQ2DFmhDz9Ik5f/yYvBqxG2hT4DmdFqvH28DkYADKqiP3vkIBRDEJC+xYJ71eVUdRVcTrB+/Yu3G8z7SMcC1yH+ssLZy/AoKSbb1XScqwDnTAMqNvSNYA7RK4jMsVfR+UwtzwKr5Whx1vofU1Fkznk23Ok5hR7Mjd2PqDddUct7dJBXmqoUJMJXXA2eEiutS5fhT9Kqm3S2Qacde6sRD0PXDbtoWT56BkGq+EjVDRAMmWbT1SxeI5LWOHaJvROFWZLh9XNY9KTbQOBSonacaV1ICKGgqnjJ0EKUTADKp2UtsTBUGL+QwGrOZOTLNc1Va9Xiu3EiNlpJrJSZzHE89BTKDYr+P5r6qu+MKMDIAZYOnLyYbXa7QaL6Xtspxa8TpACgDb4Y7C6I/KArQLJUamNLYxCDxVkh3X3zIDDjzU2toHVWALpUod9Jive8j8JRyPEgSTDqD1IfWVt1C/2jVql1L2bTxrmYlp8HFH61y+U5cy8PCR4FJEaXRd0f5GAMKkKjNJDshw+VWpTaBqJ9LnK7V+LQxf07gdvaYfazYWDQ/WqKgebHT1Vn9mZOW56/Y6ybWhyRXtvqDf6pGaEyU3aYRvu9uzEEgBzDMH6OBdiVVJen5NSqmknkS6KdDPkrobsNYh8GEM4q3UmhkcXQ8dkkDHutdoljWrq0oVlBXkVFVU6kLMY4/5j0zdBLH7yufW2mHw6ICktBAVK0DoEF1qoDJLD2tsCJoWWg30FoOR9eR7Opnd6PU075vKpgKXs/2m1ZkbkNk5IDKnjEw7wBFAWSN2we3Sk2qPcqL5a1AMuJykGSrQPElzTcDHti6pgNM9xdgqqt6JQMWYcSqYAwNX2xdVSUXSudrJNGTY/FDzw6uAjMEES3AySX1U0qPSldrp9pGWqiAFT2uRba8X1XPE3VHeqJGEY2hDEq6JpPMyUu0sDGKHNfOhRNIOrYvPodqWNDDgwuEfopGUhNuMOQEiMAFU5r+UYpCEwBIdqqQBxOCTIGW4nDa8a3VqLsDa6eqLwSAHj4KqmjSqKwDE8P+9sCykOweDvdF18XdkNR2stN8qZQm0BiRYuiLMOI2p1eilvh6ObkxSOG7PTbCffwUvXWrTxxclEsr4R0HQVMJY7CFOQPZgRKUrEawcUhXpddp77RtAtibBDZvf3xEZkAnv72hDkhNtPgCA1DrcN6aLwMFF5KTNJn3yKQh0zCzBsnPo0qqcKmiJ5hSjtkYGtzXJ4uMMqOzLhA29yJwUTyeFiSUoMbbI1sLZV6+X3cIFV41aqyRAd+8cw0NptLN3uXxIYsN1KzBRkLJN+676SbsGFugamRsTbxl8ST2ioESPRWmK84xJOn+TgZbI/FVdFKUsa+Hrdb4hXQLDNKWCJ07XsJMJ18o22PUsVVM67q2CIrUFImlOtHFhkOK/j9VUNQptN6TWHYV+t2Mri58e5wWLy0ddOT9hXGeUpiD8XhOT67Gu9lnuhp1UJKG6VGqMkhTKJenAwTouJGkZ1L3AUlr3ChJiyYoDLdJURZU5y0z9UP4ocIz8QrAVSRlp8rFHBF09YiAySzMeluHYL5KWDD2FhgW9lCexhAttvCz5EJISMH6K7RHw4z5rnhqtL0pXell69vR5Htzw7l1jyK1/D5JtlVKMpoVVRkpzQTfETeLUQcAyH1Dsu35nqYwSj6u0d2RGwpS9/UnsI+BVMEJ1xM1GSoKZ7leG9zJUcBSJbVNG7/xFahjzuKL6MoA8dYCmdXfHgWXKjQTUHHfNaFZVOrFsam33yO2Ujy4J5rU8XQfoUgMVJWX4MzpjiTYLHMBrFFvkpnyOm6dzx5CLJMpbU6UAGtOESYGIfjojU2WmjaLRaE4FV9LeqXoyOpCYUsFJmqs0JSDRE4oKe61scSYbM45V8IPG2G2uVGqxMGrtfZzJQyqCLh1TlIJoP9RtOIoAmSY0iUcAOayeWtiRQBblee75OMdjWQMp+kLGWA5zAye74iVEzsiNd4eJ3CSTXzT4BeZFS1PcI56j38wsdGdqC1wWZ48S64m0ZFrDYlAjzRqGO43LMfBY2+GlxrUjo9RzizpBKqD2mduY2ZCWed9oLANmvGAw2g3a6Sd0RmVqiCA1yVlQpgLMmSQK10mt7gWQWfyO0gmKOIuB5IsBS8MHKgEwacYaQAQaKJMQvZSfJyylKYGx+nNchxrZppb/qDN1ZWQOrESGjW6j4VRG0PvU1UGRER8irZNjwOQBCNGxztX0cQGaxpsSf23csLCbN4MWU0k2cMSCSTbKj21zW5Gi4W2cx0TzP3EfqP7R261OAACpkyRZkEtdF1XbUXmoFxAIqf2vly41UNnkGkgNaIyWHpQIUOqxsmBMAFygMyVmaiqBULCyUJtoqHeMVT3xmNqisLFsD7JG2ZvbuYxifXAMu33sZOOARZXMiF3fpREVDO1UchKeRPUiikCkILndv4a41/Gq2sfNexIH6kaGww/Op079xfNSIAawCtvAIFl7s+QhiCrBGyqe95487bgCESSczZuFaJNf+k2aLUWDUvU2gL2ka5IXm8PGRHjnBSxBClNKPZnY+X5DnhkrjSjzPbSGK5MKYfG76gYdANjxQT26k2apxwjMCJ3Xz2hYYHUFBnIgsizQGatJSVLtj9vvSf9gDxmgSVGgjL+76hqQae7aqbVzXRKS2D9t1zoB66cec0wbsF225jZaRB6he6IqKwF8jhjXj85kG6RoJyguSS7uNzelc5YkpBtw4+wDqmHeO1jh/nQ7P3H9qgX9SB3jh6BGd9aTff2JUgmWQDpbtXZe39c11WuU5HC/IxCOY4gbFxs3PIjmOmZ7TmQhdYk0ysK+BtoOGQM7kIx6p9T7Z1ReVTt6g6acnXdSTlVLocFOLSceBOmRzPXzWKBtEhfDZAqTF8OgA6R7S4BGY33CdGbSFGPUiMHhOgiJu/tIa/FaWNWj9TBIsaBpDZhs0x5bVGmKgpScSgNGDEz2uDmfV1ElxNRG+gmcoSCbfcuEDXaYTGWkdZUgSWGaJVuAuTr3HBApm/oMpXv1qDqL64jzw3Yn7OlUgVAtd61ssdWIuTYH0ziyr4It8a7IvQ9+4YhB3jQuCgONbtnvPZh4VxV3I7wrUW+Apei4fx/yfitPOyHAhdZmA0jHCJO3SXAV0OfCCFMlKQuJSgApa4snSz6G51OvRL9K6mCFXYAzleUqZKlm4d1/ZeXNnXrQF1Wn8KxG/GTlAGLeHeXEFAHRLmWhdrleisCK+6RzUvwOOAIX3qGrGo1tZRKVU7DirgfMdmIx+/qcSUJRSQMzM7oHvS8A0MGKetW4HT7VsyYhWEgpGljhMkV68sS4Uegql04KUKI9SQQgReq65kCWFVbbjmSxWRwIiWNBl7DEdrj+qopZBx7cN2AJWJhG0hQOfT8qzwHnfHvL/m7Q8wJp8l2Nxr5ta/xeakT19HiTqIw8V+xc3GkHVUKG4KZph9u3D+KJ0zWc5p2V2ZVt1z9KwiYRggSGIIUNOEcUg7z1vghJQTzTXkRpHVyvgOTmfGaqI3VhBrp6iPs1Y4edbPBAOcUOMOCjAIDn0KQrqceD6fV4ULOTySIlqgrsNO8M2EW7H63P1DFNTaajVEnQDvX+TWlfxyk93ouOjaVA0YBWqUtRWM1V3Y2tDLoLcr/On7M2yNg2Q2jR667HI134ReoaDx7iGBL2mvhsTcKgu3/AgwAtPtARV6+SNFb5CH1yf7hcQmeMhdoeEUkxLDOzgSoYUBKN0zeQzBwMvKaB6FJqXjvi2mRViTZp9bT23E6e+q0arYSaR6hjrsgU+cdAslQvsv4k3WCFuXeeSq5+sRiGHa36TqscBiV4WpAEqbSYPsnqLC5zr457AQ4FlpWZq3YGuwakqqpSJSv2SRuB0vowYpqJ+nvIk2Ztrkb1CbcNIOYO0nINFyIrDzDpVpd0OfWJaPj+Pnexf4rlWarT15EbpzWJWTzH7t0MRIZOEqkbw+pvJW8Hqmqd6gV7kmfcNO1wy+bMtBR67UPzFsDJwxjhJQcqQGUQGg7dQpyv6JCVcUxJcDrtccvmDDfnc2OmaF4z17AdvjC9nqWXibq7xuzK/D166Kg6p0s+OnNmlUhsd1aJj2RsMeOWfIZzmTAlabFWzq0eAC3uSkZBl55cqylRaxyWVOOw7GRaeAppH3JTJXnp1ITo0qwPvblE63ggwMBIVsnUTlS/xX3Jezcvk1SpiwEakzKN3aPNPoXGpb9LkPJocsGRBxN7+mgiQhV3skiZc26wuHiNzD6C/gAsAE3lRx2kOBuCsJhbdNPUlkVRDivD1dDsHxg0tCiuw9goiwrQGe1BiQqVY0DD0hq0c0XMlXa1urV+tfqEK9CvCqb0vkiqUomknUiLdpdeOw2ssM7GCo9ASZPyBDDRvy6zPNd7WRtbMGBqwiQ4qY+ZpUaVgU4wz6cgyRBpNhutLsNLK+DQ9V/SIkzE6BFQI1sNM68SliEgxFKyEBmuHnfGqQT82GDWqVxIZaNlFaxEENQDs8HqmdDVInrMnoBEiQoN3M0WtySqV7hva78TvCcTUzwW1UAMMqIURXP0rElNorem8q/odqzxxE6bM8pNTTOhTilAT3lSk8JO2N+ozhRfBkCFac2bYxELAxUBqsplWlmFVY3ELsfRuwc4bNvBdivK6IvkZkMylggxONnJBkh7czuukomNfQeAm/MZtrIxNZCqi4BuX1PVD/Xaueq9qntahhnATpAKFGgME7xXko43ehnpfEVXazcuA5Xd9kdVTzp/u1JHGm2BZlTR6rlsMKNfo8QqqyJTDfE/3Cv08mZLAh8Sf+R6xwCFAcscyilA6bYnyeXzALwYWzNhz3O26z1AAXjZn+dsAMUtrLT4Gl5okhUZ7NTTVMJuD53DCGDB2WxnqBeGiYzHdUFeAxdcTsLxRd1aRkwqMVSpONWD/pGERvsjbS4Mt/jxm7pImUUIOz8ai6lpiEm6WDTc3VHfqeNOVad1MAihdq3PK/PMYKXWXi9UAOLgFUmQbLyLZ3BAyX0clHj057gBQZGFZMU9biR9iB5AC7sZvV+pZTYGXMyVnHp015G9B6t/2EMnqoMy1Di0M/h9yWY0apKVAFhyKha3hIHI4Jau/o40ei5HIKWfW4KUbbMfiU4PI4Cnsce2ST14fC65bZpx83TucsVN6HaGu7YmM9i5EbrUQGWoP4u3WLxnyDbPOJ32JJYqzkZD44awMe4azUH1APhAaRwGn+07tM2Matuxk8kkKlYGFEhNNpXJLxh7tTs5IcClv3MqOIF+9vFckxkPlppTaUJNia5zmZtdCKufALgAdJWxZ+wCKPOuz2LjiaCKbWJU5cQqnB1JpkoJbt1ZcFa2ds0IGFZvoq4CYoNcNaLd03cAFr1Y64xGtCxBkXBOXfRYLx0XJaBgymq0p/Pddn6lS0gi00mpL2cu+mwZA3KmcdwVrbgxbpUsAF0CM4lXDUXvnRuhNZXHorNoW0cCRxQFVwZz468nUIJWF0LbDLia2IANQdlDxoxygS4xGYAvp35RkChY2MaY15K7OPYvrlttR24qoeUELOZEMRMBYZOwoef/qYVic7U/pVBSQgWG13H/WT1joNmOdbCj3mtRwpIaIxUQ8CDwHe3F9JjrmlTD16kl1JtycSB2TUrOICW+M8ldX+ON5CSYJDXmrfltkgMsXaVUAdOUUccrfnwX9U2lIUvgMSy+UNXovG4IXCl/O8l7nEyz5TPqdUcQUgyMxM0nmy5w4lyTvpfOJ6vdYsHJAZONNbrUQKXw9ghNnaJMhI5z3JRNKqZPq3VkcxVl25NtmnFmDLvfYGAZMl5VD9oul9MbNwpbr0x0QsFONtVDp3n+KClYOZcJaj9i9i7S3JcxmyGtzoOi1xPU1AAZgh0yGaP28ao7tNqLxKBwNn40owHp447SE/aQGhtpdWNgnu+CLq3QlABzyt4Ti4CLghJG7HqtSSmaeszqDyDFS1N8UsFI+5JrnorBYqYLncaLUUmL3cOSLaeILjwFzTuoJJOSRBfkaMzZF/sl5xiCksbkF5IL/ZqanUUh5qUMVK/RgGAje5hDW0I7Rgx5IX3RNum4qptoDCipxjFZoxQrbl+LjiWB1TxdypKa1KS2awkLB95UCltGbaubOtBAZE49um2TughSN8aNc3MRoBsLaPrYR0BIL5Wx3cZSjVPBmwZfq9hIFVK9H6NpMDjNYAX+eQYO9aO2qW/6whuGJD5OeokxuKibi2KbAn6PWErSVTq9npGtiO9P37zUcnr/YZuZi7Itq/Ss0E3IOtYBRdVWPN7H439z1uOaaNBHY9fApxobTDf0mzxjakBGN/TdK7Wvvzp+5QPs7KASdy3bAVwxO8YboUsNVJSK7arF5eIBluhQxV9AncAain2p/smph3nn7MLRoFVdZF3eBZKkcKI//m59h2BOma4lmxR9XUQ9mopJTuYGiMxzKMzJBHEgxfobOEr3mKq2H338xYLM6Thr35OpfuLDqaqsnvRwcqouIwJ23J9dmawNADiTDUrqBqlnZbPYUcVcQmuGtKqiYanKoV0M96Ogq3kq6CA3TlrEZno0vAi5l9cojwC6rQkzxjwGIr1iZsadwdk1I6ZH0gKkFXWBSgeS+OSDGSsgpO30I4A52Hfqj9AfAxQtE4EJh9UfdYd27X2sxMAZLKmEQrFLczmWERhz/Q8AtXRJDMdl8So5GFipahyVNqCBotDn1bbHh0yJs4KjIg0j5Uo/VpBdX1Ibm4Dmh4cnOvfRjsSDbW1E4vNq9XQJkAK/EVgZQNLFeEQS9sg9ankWAylqL6JuzCNmX6iPTlJE9RepCUqV+QMV5OVcE/IlSUDpWYyBClomdKCzjMjr54hpDZSMVUDiAMomUZLBJI4vKank5DTvLHkup5NRijaYDFKceQBgdo9qn6Jr9cMxGL7UQGUvGalMhIJ9Dhkl9enOxFBrYDVxTNzcYlvwsdLe6it51w1ulVJBNMQcGaGuEUtAgMpIr7SHTiU2Cky26A+MhdVv13WXZu8yXQFMMTdi75YbDE7BSQe7FCWOpUowNuYhxA8mJ2FkidK5bEy9NGpb51ylRQw89CFXy/EJZQFE1kTCi3tjEhPvetyvr+CJQawuKNXANptaZz9Pw3YZ4PAiy2qYaH/CO0I1now5Wpwah4FIW8BZFZSSIE9V6DxT7pkutVhf4BR8OKbP4OFGaHTdAtO0OTH1Rh+TN0qga3TonLmZ+2/XHJZQOPAmyeX34boOq5z6PUzQcOuDC1z/JXgyrdh1GHhI7lo7LaTOGVCUSvhrB81pO6U+gDFYXAIMKCb059JXQs+ojpVA3Dg2kJd41C74lAc2DhrL2rhZ3dXTBoippHIuSK2Muvlb4DlrH+249jG6KrcEhu2aTAapRRJSkb6ehnXG5o9Ay4jW3IJ5rVBA4saPFmG7RYWdmuRkzSBWaZsKbprOFxIUJQ2kWa/rx11ICXQtwVnZ2vpdyxVLmXL+eFP9PDRvcUU0CqoPia+UbXJ7wkC1SnYJCFU6USsACjBNFcwoUFHayQR1o1WpTKQ125bOmH0wuVhmUlUK2ZxUyYQP6LamYlFJikZaVc8oa1Ok5gtKGycOVcAzN/sZVS8pneadubuy3YqBFHjVVVUX1e9q36IU7VNyEuxKcvUVSTiTTR1zLqbaYTuU+hIuxYkc3I29wuoceKt2/a6SFs72OZds0hTdTdmixu2JF0MzEGEd/Sj2if5OAIpVuh78jQ0vpX3WTmTkzYw8FZQ5mXrDagwMqFdITCY1Tq5SBwYticvfIIJJ/ruoWilLk6h4aZEDJdzV4XwEaYGOgWKf9IbjxbFz1D6BmWWjCTLrM9DjjvD9TbH9QTUmYaH+jIK6yYr6ZEhNiqP2MeZVdKDsiMQXq4HgANTswFifF9SIt7nZZnRbIA8Ao/3FCJiNPH6GfTWAA7PNcF53tvSIqWD7utXfX17NR5IMlVaw3QdHOu+WvDA1NAcaVdVQPB7bidQlwj7swUjlwyBFTR/YaFbVP6ct1slp3vnNHhJiRPUebkKDb/ro5rqJ3cmEXdlYpHRt7+Z8jmtli80B7881utRARYnVO3pDeIcPdIamIIVVOdHt9gr22E5dUqFJAtUmoopHfcwRRpzX2+daf1PnxBcCS/fkJZL1O4KJXhb9XoGUV7MomKg5hFQcVxo4IXsbSeA8PWoXw9mbtT0mBSNq2KpjnO34ttWfzRBZJRjs5qtlgCpKtMym4VwRmPRLjytIUS8eO07SNw6zv5fJ3I3Z9ZjdjZ0uu6TFTitKRwA4I9m+u9Pf6EADfadaXT7bvVYJA4KkAwN+2xhuaR5EKjWoDNdfxLtsZ4vBbs/sqqzXOoa6cm4Nw0RJiR4zO5h2XQ6AypjaoE74c10VQX1x1DpqAGSlnM47zb87rcCoSWOKA3EMJNvxOIYAQBdShzjXbU4PgpU4BgUrWL+Hie8Zj+sAIMhZIKlACj27XL7NmyZG7A2HNuGBCROrgtibjWtbM3w1aUOTmrChLuClsFyDeuy4OgG3zmobm2bzsclexQ80pkpgJbpHax/MA2hlHHFdVXWSvl5x5rwbsgcpFhk29VD221SaY0lV9zDoYLUOoBL6no9uRgakuKCh6oyia/o2zYsN+5qn60V0qYHKKAKsghEX16IxS1UBqYTkSuooklHiDsBWJRepB2NDAh4op5iRca2cLGJ2MFjhsPNRPAZ3XMyY1Y+N7VO6kWukHl9EWv81Om3389fj7romoVHvnGvYYpKWIyctDYgB4Fw2zi5EH1ZHqc61ltVjOvScBFvMOGsghcPhu7mE6pK7YdZeRa60g9G8PEo6RwpQepItH0slgqF9qT7+u3myvBUzxUkBqn7bEqHlLjEZBV7zqp4KFqqkpP4WqbYppQET0EKagAACxsxSy1bjXFSjU6nPTp5mbE/21o40QCRz6tmHVbpA0hQXnVYlKoGZ3RA5SQ26hGMIDNopDdKmzSYEpndxf3p0XqrbQIOMpSoOGAiBhrQEEmCw0u7zdQCpNdLXqKv4DpSVJVhZz9LcGN/g8Rn1aQ2k6HOmZfozFwuydKQD9azYmea139elV5fPGzSWpJhHU5OemaoJ3vNH3YmVdAMSaQRkBC2XEEbq5aV0gymnmmkYqUvYDYS0dXYUCsFJPujG6WYsU1kFJlx+cSzJEKCc5L3xHd6UTqlgm/e4kvZDUwBdm9XpQW0WOURH93bduYjk1abnxheSSw1URuqVIgk7TJikeKPP3KQpLdy8Skm65KIxekk4Sd3tl4OxFWScy4QHyymKZJzJZtGHXWnRWZuRbQzyVqUZTRyIHuPEsiWrKgqlyT0yZixBzoyELZYJAysS7hKVOZwvwkZNBVNqu3epDyirsdzD2UDFWfFmu1HKs4WXtlQpjRf1GQJHTwDIqhz+5DYyYHMXyUBI8+phSQqXUdqXjH3zFFKQcrbfLAxmdSGcgiGnRtjUBVXBii6+tquXGrujZ6gFALI7EXVDTWGR7wu0qoQ0c6+CDj3Pdiu1TsFmU3DT6TkAYDdPNpbdbsL+fELZj6K+0Xy1bMGLXT2TSkg4s/HUAAl7G2k5BSvJq1W6kSahBZZUkavysB9N1bCIBhvHdGgsa6TzaoxmpUzS+fJAzFyTdezafFJQgKqiG7bd+6rqoTW7E653GPck9fMHaQWkWJsARLp6BXmlPaBLVQZtL41pl+Po57x0pU2bV0slGc6HqmozvU+Z1vqornVeRYP6tlM3njUvoXZJVCfXLwUa0n8heZbm1owxyOW+1jH0QHPAGJTYudQdSFSyonaaClLUnlPDM1Qvy5qfbclvdOPcN/TmxKLmDEDlexeodh5/cVTgH7r69FaZmwb7YuMhRYrbtMcJ5cLhqKea1Ve9aSwEPRJOMONa2kKjyjpD3NRdltWlWI03t03N1A1hZ5PybFvmZEvKR0xdwYpSIYlNlKSYJxBqts0p1eRWKn2IxrSzZOww4Vo5aeK6ZHYiEK82U7XQTiZcK1vnmgb0yLGTzZXPtbOTCTtQPBMk7MpmkXKAJWDcvgNMJinLTdrS466oZIVz9UR7l3q+q3n2Uj937beCFFYzbXJZ9eipC2oioAD3WX+kKk1RyQlLMYDFbp5/miREupeAACYVmW0r3fpVevkr233zcjvHlAt284Qvnp3g/vkmpCKI6gerHGioUMZePcopNO5JvTGeySUSNygomQig2AAbc0UAL27+Vvq4sgtn4Kd1W7cGDGERiC2CnAYuF+NjaRF/6jU0RnP0Tfq798XnEDqMJKK6ETRmpA6AhoyfpVSDuuM0a5mRijN6+CwlOYeZkUoa+fqRR9DQO8jV0ct4dWaNqZJSU902lQmrQLpK10sz3DB4HSRQwCCBz9Xvs9njsUo6blwvCokwAjbxfMwfp/04aZFi1dPVXQexDRrQDWA3TYtwpdlj7igkRm+z0CY4ObAykS1lJBfz6mGofy41UAGUuU3tphYCK94ORPVlI3WLRnQFgG3qKpwrqaqHdrKpcUxQo8Bek60Fhhvl9qkPVCZwUiUmV9L54qHRZIMMmLRPEfhUMJINzDDy7aZ8VHcCdqLtCM5BCQhRPXh2MuFcpmYI1Q2fopHUg+XUWXKbaI/ip3T36yjJ8IHdVN3DcVOU9Huv1xvrZqm2Jbt2LgsBVXSQUncJLRBfmwPdOYhU18Jd894RdHGwBnXSciItqmITH6fBIl2/yCJHCu/6OD4FEBjS2qZfd2gEUDhuhu3WB4y8NLXSE7bnFoHyvFR13HSrYD9nnO02OD/bYj7X3ZLu/rEAT44UpOTuumr9IAY0VO/k0iUEqAwcURoiLQUAg6QDUgKr201BhQZAACcKkqRfZ0xcDvjRNLBigOoCQNElGLKch4j9CA/ZsyU6N4OqB8Ch925UHuBYJL1fgSmTdEG4HFEFw1Xjo1IMbwA77DIBkw4u+nXijmlZ797cJStLULOULqlbcAUs2VyR53ky2xQGLvG9tTYHY1GQYt40ZKjq16syBBfUS+vroo0B0IvSmpENpkpObpp2uCmfW0A69pZUVfqO6jD1d56GziF9QroAgAO8KdVNKbArmzbC2mdWC924Ke0lByrK7ADUxVkmlMThfZvxUO7ePtHOYyHiasx0ixlX0g63pB3O04zcDEBRgCtph5vzOYpkXGvMuwd665FSAb2hVYKjqiQ+DzQVDMR5y/jw8M3GI3X5Sk6CE/o90eI7hee+RqD13jYcgr6ql/LiRbAYKgNpis6/1j9BGjDQgHEdCJaBwZUaXS2MctsY2LCW7YimBOwwmVRK53hKGfsSosqS/peNZHUXxYayHPZeJRKF4qWINACXi1ntD1ka7bLZY0dQd86LRTARQw1VKUjxBpYNpJTk2oqy8DJnPHB2Yp5Kp5s9btmeIyfB7Tc9hAzB/33wZuzONx2guI6tUOqfxgBzW79U9aFcoIp8+rw0PUDK3RMsJRnELyGgM4ptYpKOAQigMlFKY0PQwG4sPWntaj4ek8REJkLXHAphr2M7pGJiWw3+rD/Q/WRXr0/L33K43TXblnq8P7PLGB/0WDSwsqKFHfTTWmtzNkbBDHwoPVNnpu2P1V/qHuyucQy82oOU1m+R1DcdqEBlzTj5kLSFJSvd/kP7ubLzaOe8V6oChWU7o7hba5QzO5TU63cyValxmbDjAGySatyU1iNu61rZOhuTborQx6bnpyy40pLh2vgaAGKAwtc9XLrUQKXm7Ok7+X2ZsJfcGLgYOLGMwqqicIZBCdWepDNtBgwAcKVJRXRnvcNE6g3dYSTrkz6M7LKm6PNKPl+Mg0FKDLAWy/H3GZpLqB1LVd0zK7MP16rbMcdDmQerTfT24ZeI0wPwHHK6dax4QHEiQc487MsUCw40i4/PMuorky4cumvQvs8l47xUOw01lDUjYwMu1VjWhqCgRYFGAzWbJNhMNerlbqadhwGc+tMS0MlSVA7QjhWw8OWL5VJ6HdoHm0DpgeIsLgdRmROuPXSC8/MNSknYbmecnW4wl4TPPXQFUxKc7TaY9w0EOzsRdKChKg9m6gQoHSXxzEt/a93mJZJrriEFO7mDFYtFwkDsEJGEyc8dgEzACYFJJ3RVTCuvxsVLW5fkfl9XTjUx2NPb41eE76tWHUEVi1oOtMNjYhpJUkZUjcM7+OK/ejAAIj1WWv0XgTV0DyANDreQooVr2PaiG6Bqd7xHEYfhV+rMvkVoJdUMAAv8yQHRImhQyasmF9V6rW/oNiAqWYHr6ZKiqmbVPRnc39n1C2AgkCziOnu/1vJ187WTvLDZU0ChFoe5eWWqxLq63lUP0G2aXWLYbhoxO1Bkf02tH0GZagmuZI6sdX10qYFKda2i3XNiY6YeFv4075uXD9uDhIUdzQNGqqqD3WkrgxUgzchIeGK+1o43FJq2IadMk8porBayRdkGwVfPaOwBkjF6IQ8ganPXjHWr4ayngu7lM0zC1cCK5r+JlJM0jx500KDSk9avGBDIof5U4V6PVLs3//trssXn9zfXvjn7G5LmSAGroVzfRSPjstQkL8rsmyhzVpFmC38PwHnyzCXZQlekS1OAukvhZIGliZCZO5i7MqloQIuoi2MhMEbkxiXJwEqfw3p+rFrxJAIkk2Yow9HQ/KmJvDMeuHaCfTOmTc0lWPa5goKCxugaYNgUiEpDGpiwfrFAY8RsbIqSBxHtWB1CrgBFr9HovCaN4WvCscD8F/loYh1o0izqt12fCSTyLXH1BaC2GC+BOX8CHEuF52vV6JWkZA6nhLLGlG1MHejx2IeGi3SMjbt73dpg0lHQs13Hqu9J1vPt3Mge6EbBytIDKIXztb5VNROV0z/Nd8N1MBBai9o6yv81Ml4FKujoXoa0nmEJTFzclUYjr07tQyyrg4zSDKC0qOW9nSkJpmk/XOt3kmvZYATLEhXO5aMbSU6rooa1ClKcpkPH1jbwUypYhmS9mC41UKkGQ/V7zQ1TrbsVLauv+xUCKWqfolQNVNe1ZtW7pu/WJ0mY0jmQu4TjgXLa01hTNL4rzWD3St7hJFVVEhvnquGu2qBkdFdm7RtS98iJ2YQ7qu791RIxUm1OgimsjDOygRYut0YaWRDw/YnGVVsABd61+Uo6xy35HF8oV/DFdKVdR/cBk9sxcDRaVkvtZHK7A7Xc35UJ52XC+bzBeZlM1aPuxmw4J7aYoKdgH6h8cvYL+jy31PSkEirFL/KmUqDfCybXmFCXvqCrIZThAEvwQn1huwpTcyA1uxEK9NWASikJ837CvM+QOUNUrWDy9AYomKlO0mVgZvBJ3LNJSFQqYoAH8F4/rvO1PbOvAYONhjB0XBzHhRlwavUECYnVH+dqweSxPLhCHSwclhwsQKaTntBcjMZxqFoGYSOJCRds2MLZTYk3ME25LEDS0OU6nNPIrkISGn1fko4LcM+6gqAu7fBgJZZZjAlj+42Rbcy4792eZQaAllAwGsWaZ1AiCUmTlljiUsk4n/2WMG6QYkDJNWJpCQMYr17xUmGt8yKpDceWyqm4ZyZuznsbPlrtNi8TDGrdO1TPT1MP0fkJAmjaGezcpl09MkchRa6HLjVQ2aQZpxoGWZohU5NicL4C89JJgpOYpZiZv1olB0Cwa94wU0OnGQm34LxFSm0Ms4GU82agClRme5L2ZpSrN5YfcLOWhrpD7zvISAAUrHD59rcIptMWPlUfK5q+Zgn7tK8+ISB76WTMTv1SA8m1lN3woktNYqi/ZwuDX1VBKlWZkXFNTlockmbD0ux5TNVVsklK6gLSPYgAWP9U38pxUs7LBvuScV42OJ8nk6KwqkftUGpdXRKii0s01KuApS586nqsYEVJMx+Po3PqJ+90+2K8MEKE51kC9HgnxOjiztd2uw2s5NRCtBdp8VMAkVzHMacqJSntubKGCAyQmgabgrSp9ZjkQRmn9qNUCUnK0u1oOQ4LEzOz5eaw/9Cop24eaaIas2eGjKa2cdKU1oc6z8W8lFIKQpvGhFPSMSRftyQPbhh4SpBGaHJD10C/h6N4Kxx4bwGiCGwuQE0rq9DWQCN8HWNvmsNgxRFfP/hu9dGzGMFKBf16g3y/+DiDKgZFNB3uvWH7F2+bUqU91Vsvt7Wa8aI+8/139YLZoEjdJO3buq9q/JNpNtCgHjP7Uo1z98joISn8BI7ASKQOjFJb84FuPzK8ZEFLJ4bJSS8iONLvUwNAnK/n5nxuIER5ltopnsnGPCzXQE2d1HUzhhulSw1Uqu6s7wy3idx+m884i6zYuLNmFOtGqv3h6KQIMj5gWxSLVTI3NZB6BuVSMLVptWBxqZjBLNA8ZKBSj7G4b9KtZ2pqflFxmz48A5CCDlam1DH3jGLGVAyS1CWZPW9qXACP5GcwuMDygQSrx7o0aIeu2trJhDNs7SXJrazO6yLgXXjpdjJhLxN2zQ7pbN6Yh496s+zmyXTKB41lpRvDsl0KE3sWKCm4ULCiQMX1dbRLToI0CaapuJ2jeraYAS/nr1HGxrFMZCnudqoPra9JIjiei9U/Jw8UykrfKQGdAymLiULvJ3q/D9qXGNBJ/piSJiBcqWJp60HjiYCi1eUS6iUBcmdsdYMDUnUx1+4g1QEW60NgzgPO6iQqPFZJXVJF41Hjag8eQh2pQpOE9lyiX6fgZTWCbahbVTFLb7Zaq1PncBdM/eQlJjY2K8hB3sQBJ/byAXRzINYnNLUN4G1H/Fi03SodSKka2CpYKSJAU+9KqolrLXBk63tJCZtUr9knkrxAcDLt7TtSN/Tft36cz5u+rjVJvgIW9UoFYI4eANkb6nqc98icFHawxnMAy6gmKg1ULcBKu2MxSW88dhoyJWudu7YBUJXO3GxWTqe94wfmSdSkJuosEelGorczXWqgolQj4NXJPYW6GXNU2R5WGOih3UvT550ABla6oZBKBrKpf5g08ustOEdJGdfQVEr1XbGHYUtB5ZRUypCpza7+qRUsszn3B9xLdzwoqWXh7FZYNaNtMWBhuxA2YvU2JNk9kFUe0l+KDM0npDFaqo1OadIhvX4SgcWDYYtwsknhaIkq1TkrG5yXiuQrOJlwbd4aOFGVjgIUgXcz1gBu7K3DAdsAFkf3BbEDC1o827ma+Zhce60eDlted9g5daAS21UQwUDFSVxMMuD7WftBN9p27fQ9AcZe9LiqVDgPjfKKLBXMlNontWVR7ySxDmp9vu0u0VhnklZ+pHHlvlhdrXyrUziw2kjF5LhpBB3t3jSPoaRlmqSj25P0ekeqEQvApnOk9SXqo44nMG3rY/IGoAY2aV7dMxCnqgCSEtKqVeoF92AxJro0+RvR7XpCnfG5T8tzKlXRMjFOSgQrKfnknMx8E10Tx1DVsLlJb7oBLEoGcqlrlEnOKmBRsIJcsEfGBqVu4Fo7OXXnCAAmmQe63cVemjQliUn244ZFwyQwaFHSdXUv06rEpavcV6QyukFUqXmbH5Z4xzQzQHdW4LQyQFfjc0h8VfdsUfPfab+Vp/QotX3d1vXc2eJctDYM6MsCqAAUdwNiFspqwBnjgvScM93gczLg0pis7G3Bq4y56/vsoUUNVX8l7ZwqZcrePuSadJhTQdH6OEoQ+9W+dREcq304hsoEYEoJ88IORT+7x48zzg2xYHrW4aB/hU8gyJ8AsMPGuaRNqWBXeubkgoQsGSVpZmgB2neV6ui9YOt7Bilnzf5k3+xRzuaNGcnqYmYRhkvGjiUf4u1TAAykJiG1PJ9RJieph8+nXCdOBC/EsOAZILBcaMOa1nfhQN+pu76Mj9u5UJcDE9Rf+2SQobYmkoA52a42adyU0sDKIYlJx2gdbAiWoIL7tri2cWxOVig8U2l8vbaDcG40X029AM4+rV8L7/yXfbRyzdXZ+s0AzjHqVg/1Iw0YWhyPjzczYNIKTPnWQiV0fSvB0g/tCwceFHRwwGCsB2NjkB7mQ7qadGGw3M6PbHy6CjSCQZ9Hy+44SYpS6mXY3VlVtgDqe0qqpAIxNYpKW6RJIbJUF2YXoE3qKqxqnk0uYKNTDTjJRrgn02zSEGdrKB1EaPsAsCEJhwUthXcHZmJj35Frc7QDYbXTptn9bekzuiFfK+q0nKy9GlNsNvUQZ0q+VrZ4sAUNHcWM4UTA2oY8XpMSAn1CdTKvpF1FfSgLg1ElU3PIBgXFoqfyNRME56keO2miuV1qqiNtu0kKZhScJFUt9bghTjKBjC32S9WJxSxJYPdezpZc2xKzPQFqgDoFKZFmeA8gTQ4I8Ya0HQFn6wMb46oUZaaXYE3vqFbiMbDPlDRSr86xuHPbNPf5JxFmkexAitqj7NRgVnqcFJEEaa6Ic/P0GdmeLGNJ9MXM4ki4nV4n3bnZtXECkiDlvqAnZfJ2vdq/JGMSuvAKsAQTDUgswAntUjsQQdvVB0aRlmUck9ffekutjaRWeU1TSscjSCBm4b/rOLTNfm0iqQVSZyp9smjMOi+qCuM+cp+1jM1fr0ukvu5sE2IeP1oGjdnaH3PQVm04JmEcUQJmRYVAzwIkE2n3g+RBzw0j+DhGbxfZGNTotcFtaqt/17w82s+cWRLcgfohMOLHwf0fDNNJV8bz5QB9Ws9x1AHPciNS0DcwGlcFaFvBUu1X9iVjQ5+c1A/okhQ2Ot2X3CQotexJns3kwAOMHkFbicEMuxOjmRUsQ1wsVSa8RsZM8dYOtcFhMtS2RDf2HBOMQcfN0zm2oOtaQlqVpJzJBg/N3et1BIQs2GobwzJAx8V0qYFKDEymEgcz7mk3vYaE7zdaMyEjZQMrahykBrfnMmGbpubForl+Kqo8kYJdys7auapxOtDhxH1VDKeR+ho3SGMnrZjJOcZOcePX4ympxskoYlbX12avc022ZJvSQQp/jsR/dRw++ZR+6vGoGz1E2zQjDqBA/fLrvbk2byz0fSEGrwuGuhnv52xAxWxIzBi275D7jtG7rfKuUo/pNbpI807U7+pgjLWyalo0S80/ZEaGzciXlzM25rS6rAJlhgGsjHapm1KlIfs8ENfA7fbrRVSR7uqY8dIYDnq+WF1UpwNUA5AyGIMfcyig1+TYf77GTgykKE06QWCUx7oAB2H89t2ej+TnMzw3a+M6dL57GiWYNCv1c4tLR7hFuqJObWtsuvl5HUnroGA8L44zqLfrB89ryst4M9GzZ2kD5vsfy+i7GoE4B4mL/StNPQbA7FHmdu+rRK1udKZcnFfQNqvn6HL3z2BFQcqVaYdtKla+qnKygQcNZqnXcNkRsYqGVSesVtF2onMB4FVEC28fZKAAc2qS77knhjXnicSb4tLUOxtck43btPqEsB4I6bVsaBuT414vXWqgAmCB1iwqKonUToKoaW7MukpSKPsjEiapQYDqA7DBDL1JGSU10JKAE/GxWLRNtv2Ihqs83T0vjw/0xsRuYVOam7SliicjaLFrmvpnwtgEQNvicPcdVPWHiMPdc5bjOpbDVtz8AOsDCyxBCwOd07RHzh3oQGpOnvPS1D0y4bxJSDSuQY33Qu2KT52ubsZmbNe+52Yr0he+1r/swUxZ3pIhrUe27IuvxVkhQBN5sFOTLCrDYabu+oNqQHpRWWboQAWKrj8BACTOKAx/LpQb9n3RUXRJCkka/GY0dfUKU+nXW11sMBv7H/sDYoYWOE9MqsL1GANlo1zdvdtzpXVH5LjsAwPdcfcILKkqEXWOoiu8b8sfU7BibepgEk2zdJdlLhclh66Z1I1nY3+1id6JXoY3COsq1qX0hUGhql39+bRyXaLrc5W2BmlDQe+PaJblWWNizbbOKKn6RK9XqYvaukSX4lquxZPKK4HZWFWD7oGjcV9cOhNMPaAngZSz5lAQJSg+JkxP2Lsnm0D9NDOJsPlkFVY0kmWjY70+JzGJuo7ttI17lgPh+Q/QpQYqHLLejrWbX+0gyiJsvR6vKZiKGY/WOChVj6kxUc5lMtsVXgQmCOYkJkJcAw2RFKxUgKJuxxnRI2ii3wYeZGpeTc31VxK2Scda31KbCVp1zOu+IXoFSDYfbfxMHO6+Z03uuYD4gQbUUKw/mLvSy2+lBtwbArFwrNq1bHFWNnhoPsFD87Z694QcPb2fvMMdL3xtGqoEg5ht3DknwC1avBBzubU2FsdpkVQJvKk2DDjRZv4AQOhMRgdODNlJLirTLbsMVhtZfxQwSPL1uT4zaGigI3LuyGiF+pQHaOoAY3YgxY0ptkE7eH0XuV/8DI8AShwTnxoBALe77/fHPQOsAox1cL+pvaENEfePpA4OFCb4frnxhu/h+Y7t1WqSPY9ppLYZXdqKeMDhJSS+XQ/g+L0bvUumqilAzj2cP5dRWxhfR7+eNx6x7xrY0epq/a05jgRF2poyzQZWdEwaEC6Shs4/mzd4KAAOTQio4GSbepgMbb9Ixobymk2oEhr1XAV6FO+eqyeZB6Ta8Om6qGYBaiAL1DVZ1e5ZZJEoUfkjuxrX/vj1OSaRtfU7w3KuTej5jTRkBzKwlRlTqs4VD8fz51IDFYdIm1dJlTr4YeXUY5RkVJuUHfoD4NQbqapEtmXGnJJJYzJaBD90sDAR2lYj111ot64KHDeFXaSBSQ2aCKBwrBWzHUn72iaa/UaqjLVYvcBkwKlKjWDSld5HpZM045ozMK4uZSqeY/GeeuXsm2hUXaF5/ntk3vriPFROqtgzN8tv6brKSIq6rw1AynmZgpSq2qN01z9vJOuCWyVvkGeun03aom6M9V71pVq9FFhfz3WOSF2M65VYgoSLdvejc8aQB4w/AhsCIhWQjXb2BDTiuRGQkFCWmI7TM0bQsqjDn+ddrWOSif5ce+2zGfQioXkmtQkSePuayLgX41oeXKgjArOX9o/PG+NutjukbFlt5+Bx6ocLTb9eHEjc9+W53nlu39dZJCEm28RBQFHnnQFLLVvChkEAlYAY6KgdY8Dibcj0c6weUxUPh/z3/RNX/+icXqfvc0qANNUPUJBT8xIqNfvxSQMMmzQ7wMIuxAXJBYQ7mfSaCjhUEuPUOKjJVdmmQz91TdyVydbes7Y+7ps6nKNz9/4Ua1OJg8dt82y8Mhq7cjgPJh8ef1oNAcLqI6B73p6mPRkAF/OYvRG63EAlFagjru3um5vv3OwvVB+HDFOzrJGqN7YyW4bgqEBRl+VJqlRFpRRM1XBUY7MUt1CshUkGlvYpbC+SkRfh95UKqlRlmxJySphQDbGKSFNz9brV6FelTQV7U32p23E0ml3Ly6MGXxHxV9DXbDJALscZ7iVgexeVwjxUKkjZNZ1rkR6Bt6CClFkSdgRWdMFRXtWnWxeiZi2iSQENwHSD2QIsF1mivmiqvr/v+qMkRVob2hllY2M1QAAPw105fVLiP2cHsJCOrNSlfYvgidUrBi6kG68uzmEJmGJ/QWVHY4vX62/nfoxuj5JQAUmSXobHYZ8r4wZLKVIAAwwwtOwIvHVG5yjVCzmpIQc9G0pcFDyWXoddq/1biycTseuh52flmnhb2e6qG8cSqEzK4PvVHqj4DnB5VaOqOqluEtbAe6Jyg3cGgriZ0DnotirLwce6GMCU5sKcJLkUG/Z4JMGJhjwJ0hKgRq7VTdgmzzglw9oRKVg5bdHSLd6X8bHqUbMvXaLNyQWdasmk8Q0AScLZHLMXt7gxUm1jNLUMA5oo6dANq24gz8rG4llt0oxT2TvD3Kn1pcYe0/Q1fev+YDkBAOzkcZbrBxjYPSCZHqxIxi5NKClhJxuUXJHkrkWPNSDTqCAhatDmBhAKMs6pqaq/60CCo7068RgEi8iyqQWAGzwYoGtdHfS9SjXGL8DUQE0GqiswKljZNq+la2z0SyCK+x6NZmtZcSK9WWA60Zh/R0lfnH2ZsEuTGXDp/Gl7+hI8NJ/grHn2qKREv0cPn3ptt0kxmxM9T9KUuiA21zha1HipFiBkS+YdJDqDgiZw8wxLF3rbZTd1hNkx5KV7ZlQfLIkYr/aB+x0lIZHp6zljCNKBwGgBtQiBCkQUDIQ6RZtvc7DGTAeSIJOmDBk9H08duPCn68Og0RFg0+MHJBmLOlr9B41iQQxRwjFSUVl2bAYrDK6chWyXynTQ4zsxtOEYzGdam+rWvw5IVrCdjN2Ke7t1gPOcA2CRprrpEhMtrzY+AmlSTenneG4G72Hv/+Gb0t9td/SglEbPV+/Bqgaam0eQoHn5yISNSSAKTqd99/ApANrvCgS6mifauSiN3IRVctHXw6UEJSfB6eSdMbrHT8ZZsJPRsPibJs1gkLJNs1vz58YzR5tI9gzdS13Pd2nCVrwBbfW27WFCZiQ8OJ/ii3NNNVN21w7evxFdeqCiFFNiqxonowcbm5HN40eBCqt91B3MXNHQo9kCVV0zoyBLxq7ZmliYYGTL3aPUEwt28KFJEQGfNVmDoEXXYL1Gy2/V0KlJSjiGSm9XV6iMbRJU+Y5glwpOZMYuTXVcumkN4CiClJhgq4scJ0Bgah89Fw2KS6ovoAaWq8frNTuZuqpHDWdLfxnUFdlckNEWwiQ1hsqA0Y8iNPKuL4qx1+xabGcb689iO0RRgUNYBC9icMp0nWFl8h5Iqx42Q8a0wvm1LNdlsVKobQUxh/pL381rZ8EP0rIvBBYE4lQ/w/p5CAyS2DaHmdoInBw6xgDPJF8ecbhIu65PKzfWirFEQUxKsgBWJNGR5PvGkohk+ZQItB5sX9vufe1gip6zcLkbFfWTXYhH74lz1W/uwznXGhPNSc5NqqLxEVs8noUnXVAJ6XfXvr1rHkSNpFasGmLV7cjzSIQ0miUjTz0GSY+V0pg+SUtisj9d8yzUDj0zNdkrBVyjDdsM2KbtrGyb9ETX3uIc3UZ5gVj6zIDpdNrjhCLPKigC+tpdeWLfcK5lqrcw/zpOqc4davfC0W2zjW2ydf6sbDCVG09LeKmBijLEhWRCVReKEFuZItlEUezpsys9P8+UfFTYkUGR2qrEfqjrsX4qCMmpxmVRKQqrcBYGpWHF7hmI54aGi4EUjqGSAWRnJJUxQ+1r0Mq3mCzS8wWtUdQ3xk990fTF4rDMo4BDeq26vakti+4eds2dTw3Fegj8HhJ/V3o2YFX5DBdP0QSDHkCMFjJ1w8y5eLAhfWcbF7ih62T7x201BLNgwmYgaH+9FlYpuQu5Dl1kA0hztgq2o09efRN2+71+OuDsa3AxsdRC6xox9BTKFv06AIoKnDx+8BKoRGVI1bYY24DSQO0ggmqnoMAiYzHvC/BIajgg3BMtL+otRNF9270XlYwB60xX6pW1SvFqkRFAaf2yr1E1tkYmNaQ6JBrBdhC1kHqk7mnG9l/cN4t3QpuAkV2PAykEXrzqrd9odlFeG5v0y11/2i+IiBduAZhywXZq0gJi8JoiRL/XAHJtDdRQDY2RK9lamKo5Qkk17Uetw+cyU1LJia6rumkbARRem1nqwyBFKUaQ5fZHXkgusqx9L1DX600uFt32NO9aEFQ1J6hahNO8w04yTvLjDKhonA0ll2yJECdQd/AqKajqn8kZjAJwKPAiUlVPxJ1rrruabFA/Y39j3UyciLCOrYbNZ5AyIaGILCQr1SVNjW2FYr4s3ZGd8SzZnayRgop9mXCOZCheyeX1sbFVtREbh521aLP7ku1TQUqVqOQuURHuc/3kRU2NWosGgBMPNGp5YgSSFE5aXQ7MkB2Ej7fiXZ6tePLXJiTPTFT8zUHJVM3Bu+7E31uH1TaD6uK2hnYTBAjqNcvr7Hd0TzZmQGVj/SNgwH0fkHmbqMicAUnq55cXUjn+zgxbwrl4vfbP2eSk/hnnSufPAF4AeQ2ksAtzBEkq3RAQWBmVcQf02fFgxLlEt3lTwDJi0szouZ2uomx18bDtXDu+dK50z73QsQS2R5kWRq/cj1GE4zWPuq7GCiAP3jD3wroCiO4GtTRHrS71BgT6WndeKmBgN2OgG9ayd4+6Dyup7SBQTBq9lwk91kqXrrMLc3VWqEyf1UBLQEESHzLiBdqGUmN5kUQE6FIZPsbJCkeksVZACYA57IXTViCZugkA8uMdqAA9NocSAxSYV1BwsZIaFlmlKfUhSygpQ2OYcLwTdSc28JBK9QBCaeBgbGei1zFYAbzLcI8iO16sq40LsIUHKSOqliqau+FiYj1lDCy0KCsakr+/RNs8Y18mAyucW4Lz96hNC4MUDo0/l2zJBfcBpKiqh8GH7SRa3xbeAyUBuQMZo9aXNHduHm0Iuj5fFy/e6cbt7HLh7SHQsSzb6q/aMFuJ7VMYzCR/3aJNXYAlXKNASJtQRj4ilqqMypD0R1JX4ZitypoEiIanfViofxhEROCDcCyCojVagK7wW5+NcMxJarSelhXZjFt5Wjk9QgOm0aDWbdUD+BhKAVLr0BBwEbCCsJzGqXksKzTofVEGbPU2WxEF7BE46DEz+BULVrjolpYlACMylqqo+7/Z4yQdSauLJCs2ytTnNNqajb18aEMSwBrPwSimEuBV3bNknM+wyLXqxaNxVDSg2QZwNiJnpbJYBg8a5l4TrO7K1ABOquoaAhh1A5nw0Lx1tnvcx00qZtzL6im9vki3NdF+jcbIv5V6jjeft0e/s8HwTiZL2DoNhAY3T+c4zXvs8o0b0x6O3BXo9a9/Pb7lW74FT3ziE3HHHXfge77ne3Dvvfe6Mt/5nd/ZdJX97+Uvf7kr88lPfhIveclLcPPNN+OOO+7AT/zET2C/v3GUdW3u1sgPlhNcK1tvFEQRVbtkRWOB1FxA1QioJ2QaeaXopJ+kGVt45Kh1TRCctFD327Q3W5SpuUar2ofTaV9JXp/HuXwA2DFLrIim8kEHKUyq+pml2qXsZMYMMTdmlqBwwLkaiKej6ygS5D9LXGjnOwJnigmw+IVQy/G9ZAdSDJwQSJkJpEQJCqt+BN64toMVvab/dVdJ3ZmhZTFePmMaAj/nmlTQibNp4QcaT1HRtvD1dQ4S1amMsDO/FWlFQZeirAEMJWUoBZ3hqt6P62UmPKwjjaUSOiZJSGbjou0BqTG8VMLfAemKAwPahgMiNDdc1oEQBgHhnF6f+18Fh6lmSy6hzahOSjXztQMpQAvFvwIyMDgewNWqimI0XjBzX7uuNROfc8DUpIWfe6Kce+JMfd4NoLcyFgaggRTRFBAETHiYNqWjMsoUg4F5au9DB1NC4MrPQXeN9uBCNyb8/mk76tasf6M55bXFPAznbit3Nm/w0H6LB3aneHB/gmv7La7NPWHqQ/MWD81bPLA/wQPzSTs3OTsWDrY5orlJb7qTwbaqZAhM6N+mqXdOGxDSdbZ6Rk52fbUBnMwW8KGZpNkh/AP3oyZd9CEiABhIYZ7JjhEajh+AqX1O884lPrwRuiGJynve8x7cc889+JZv+Rbs93v89E//NF70ohfhE5/4BG655RYr98M//MP42Z/9Wft9880398HPM17ykpfgzjvvxH/6T/8Jn/70p/FX/+pfxXa7xd//+3//hjpfJOOseZRs04ySknO3AjzYUINZDum7JXRnIjfydbcgZ+SpU8FEBxa9bL3J5zKZTYqSumudYMYJui+5xmMxEJEK9UO8AW3iGCY0RshCqjKLYIcZOymYRRZB3dTzqZAl9zx4YDmHA9BtZtgCvI6vo/naP6/bjHFWdKegYGXf1DwMUuqOzC9wI3FujYSYLKDTwl2YRdL0u863WN18zC+gfcfFYMa5tpblTi6hAZEk1jZLOExk3xLvRXfQPgb6nsJvZtL6G6h6sUxghcGH1mE7c99WmlONfxElJNw9BgZMBb4+K5aqdxCTGlaSdMaNUz+Tjie0vUZ0Xxbux04age7urMfitaZW0U84IKpiDH5eFtIUUFnr40AFNAAiPrZJk0Ek9GcpMGpuR1rf+uUVaCD3eCfK6HOuGYWN0VP77t2AAvIw1n7Ivuv7m2h+oxdRiu9Du9pF5w1jXPOCUvsX9XKL6l4+thYUDki2au/nKo3YTj3Wkq6Lm1wwSZU0nCChyIx9yguJRM0BVIHEad73jZtIM0zN2EwduGhIhz3gQuNr+9EVeWsAxTuT8NrMwT7dMXSJCycv3JUqp2e11um0NxtDoK3nFvZD1VMVTHH8FLVZmVAsANz5IcC9QjcEVH7t137N/f6lX/ol3HHHHfjgBz+I7/iO77DjN998M+68885hHb/+67+OT3ziE/iN3/gNPOUpT8Gf/JN/En/v7/09/ORP/iR+5md+BicnJ4trzs7OcHZ2Zr/vv/9+AG3zKDVIjya0Yx94oDPWKSEcr5IP3un3MPxiIfHdNaQa6vYe1fW3PgN7O6/B0+wBaGqfKkXpRlkAgNQtx02V1ADKFlVX6Lx82pvpe1cfxn6uoIhAI8HU+CjtXJM4ncuEc9n0vD5NPNjz//TyQFm8hH1efOpxdp1WqQv786vBmO4SFKSw4ayAdnEkTeHIsWL9827FrPZpM1OvGYCchMgMxguZRszkersbZovDMntVgvNWiG0LoDlnIHCh2RcqGwYJDmj4+tx3aYWmUF+SAbjBcm6i7Ugr44KzAeaazBKWpOo5ZSDSQA/Vx1FRkdpvCW1mAaZ2PC/nzyhySNp19/L6fKCPX0GiXSv+EzApigGPAO4qEw9xXXUoNncpPAMXLNTWP/GAzY1X/DFtd/CcsdGtAJZVOSUxcOzcoEmSAqww9dbPKHlhstHS+7Iok+DbtnLL92hkDM9AK9qV6HvPbtDx2to/7mdtW/F2aWk75tyj2nJwyJykqoRSzxNkgdcaSLlp2jljVhcSQ9cwWh91/ZySYCI35GWyw3ZMEqASbiQHZlSNVCQjlw3OgsmJGeOqV2YzkC2SsKc6dqVGmGUJurom9zAUbcObeswvDSRaPWZVAn/jEpUbUv1E+vznPw8AeNKTnuSO/8t/+S/x5Cc/Gc9+9rPxmte8Bg8++KCde9/73ofnPOc5eMpTnmLHXvziF+P+++/Hxz/+8WE7r3/963HbbbfZ31133bXofFRR7NuunF1n10gzFLPurdbv3ZPZ/dgkMig4STUN9s1pjytpjytph1vSec3g3P5U1cOouLff1T2qkhklINwm4CSofKq0RBxoKa7PClbqQ3xOEqISbn8d3zL7pr4crJ/0fRsvvNX4qyfL2rUYKdUNeZkNWUWsqsJhu5S4AKsoW8uW0lU91ZA2LGoN/NifkBFd8uoXvzvuP7SNqNOuKiFd7UBMRoEKARze0TejWmE1itXRQEVWYBHAxXDCQ5mSakyUeB0zQMADH1KFOPDR2k9s01HXxwXDZIBiRUuzBTJeyJO8UpegeywpkFFVGM9lHA8CSNHqGKTQMWeXlLqah0EKqwwVEOh96wauaGoH/V37KEWv4T6k/txdRCsowKkuQj94DvW4lNa/Qqqgkk1V4nL76PM7nJMeOFFDBRxSTR0aIatm+jF+xySUH9ej71gpdbPDSUnNVo3+tO1+fd/oaCLTee72cef7Cbv9hP1M9Yu3F2HSbMoqSVH+wp49e1LNPLA/MRWP2pJsUgU6t0znuGU6x03TDjdNO5zkvZ3bNFdpoNurdNWQRyVq6Fsl82ENT90Q+LSBKwVYQA1o98X9Ce7fn+KB+QQP7E/r31w/NYOyeRO1zelZ2eKL8xV8fr4JD86n1TxjZc4O0cM2pi2l4NWvfjW+/du/Hc9+9rPt+F/5K38Fz3zmM/G0pz0NH/nIR/CTP/mTuPfee/HLv/zLAID77rvPgRQA9vu+++4btvWa17wGP/ZjP2a/77///g5WUg8FrEmc4kRo0Da1GYnXKUUpypQ0tHCrt8rDzWZkmypI2SZgC8GuvZJbFMyDN6rn2GmgRDr63Taj3m6fUsFKwXoCwllqUr4aEbDaqMwRBKWEXVuJ1eiVieeKgR7PyQiITCjYY2ovA/nwS5Pc0PDVql0NxzRWSgQpao/CEhIGKWw8292T4RafQx45Tk/eFttEYuJVuwGs7+QWpEy/tadeCnaIVEROiiJ0PVAZsmJsboc9cxL9Hr38I0Yf7k2XtGCotkmSll441N80py4NIYYvSAttC1r2ZZkEVQiZehuyBBsVzLX+qX1IZKY6D+E6NtIECCBo//U6BYRAi/RLz4wCKAKc9TM+U5qFObnD9syU/jyyIai5sIPAKI8rEgO/URl67voN6n1OJLWq053sPfBuvzCVZW8PdD55KQrd6BHzd7dHluoftfsq5fr2zQxkIvjgMXC/++8IfOqEJLov8Vq7jdKy1EtN+ho3dLoJ3ZDhbHVrrgBlVzRdy9INGFjGPhmtu7lJ0iZL7RITDy7ncG+2IgI0dVO1N0y2ftt5wIGcIpXneRtPbwtTN9fJ+mIBQOc+Pg27n5NgX1ae7wP0sIHKPffcg4997GN473vf647/yI/8iH1/znOeg6c+9al4wQtegD/4gz/A137t1z6stk5PT3F6ejo8x+GHt7lG2UPqfuJeQnJ9E5RN3VIM3Czjm3Tj1npNlXhkkmdclNJ6StJFfYJFDgRL0w1xqqsJFZBopmQ9tj4eTxyFtvu6dwNaTj4IdFAXJSmneYcsmrmz2aCgqnZK6jmL6oPbgQl79+jnzqQn2QVxkyY1SegvkgCY5+zAiZYdAhQA0SNGd4TsPrnm3ukDuWkh5WL6XcvDxOKLz9Hjp2DC+kjVxmB2xqj7LtokBMak6PrRI8F94Dnhc5KAQzt9BjUJSHHi9L6YlCn1tgRdsjKaQv4toAlt/R3ENrFPnod24qAnUqszJRgQSgY6YP0dbgD5GElX9FzSfrLagsCTs5lIqIa9q8CrfYw60sbtzg3VHMu6FaxEd109ycbCrH7RwG38zoxsbQ6tfqxmSfYeFpNoxLHqe3hIorJ2fARWlnYyPBa//vC4ilQV8tzs4XYhv4+qfDZ5tngh52VjKm92BVbKqTpiqL3JaZOUbNNsfEztFtlOhtdjtQEx1Q3GgeAAuL4A3bVZ3Z5V3RNDfGxTQW7xZKIL9izJ8Yh9yQt3aOXFu2gweR30sIDKK1/5SrztbW/Db/3Wb+HpT3/6wbLPf/7zAQC///u/j6/92q/FnXfeiQ984AOuzGc+8xkAWLVrOUSsjqgT7jMlK7lgPMpA1Rdc6zKD2W4sC6jLc/fcAYJhEjROSQUrahOSw9sz8kifeAEZ3L9q/1E9fZRYaqJOHpCCLRK2KaMM3loz+m2ndG5UXKe/WX/KKLjGY5mcMW3PoizYgyI0pvZwahvNWPbaftuSDFKMFJKkqPSE7YwEdaeVc7HjuoNSVQyTuU5KWi7YtAuM7oi8IOvObrSAda+KZKH0VVTc20hWvn5izCR1gMyUdQc/eh6U8UWGFevn72aASteUMDfu2mR4CamDDRdRlgFN2+G5/oZnutbH7aPfn3atqpZYemO2LpNUFRZrcbXNOFeLORv0Wa+BSjWCikEAmfszqDlFVQJWpXDM3EO/qKyqjuy5aPePn6mUpHkj9X5xX7TckCJIoT6sUYz1E+MM1Xp79NdM0hV97heqVSwsddYlQ9Br642LsYtq//y1I++eEoD8cByIgMpvNBbG9+jj8gbH2o9mkyZi61GRBGyquidnsVD1SgoAWKKtvEUBwTIGS8JZS65bN+M7y6ocPSi9VLxLbDgvUJTeaNgHdbHOELMV1Lo35OKsfVYX7B0AhPr3EOSy8R6xSZykpaCq+2+UbugKEcGrXvUqvOUtb8G73/1uPOtZz7rwmg9/+MMAgKc+9akAgKtXr+Lnfu7n8NnPfhZ33HEHAOAd73gHbr31Vtx999031PkKOpJT2ah3DeCT61kOgiC1UIY7Sj0dpSgnK25VFaAkk2qoS3DNs1OpgonxOGpclKo6ciH4m8RmSt4duRrG1rpnaXUntDesmKqHJS6HSOdpClCqSLJVuua5mO23nhuphthoV41lz5ubnqp5AJgdUdUDkw4Zg/VaNNosMf9YhlwnR54IAO8s+8I7dlPUczC35CrFyXbcDGlL1Y13JtjBhNk0qAoG7bfyOg7+pkx/IUmRMfCyzmJl2w/dNhMg0hU7YZSI0JooqUtVpAMJZvipXTMM0KZAQn82FZXQ9Es7IJNUUKLqoMVNQ++Lzs1UluW4vBvr4Lx9H4ADoO8q0nJXbpIIwNsXHQIICUi59lltVnQ8krtkZWEwurKBGRnNLsYWyg+NxgfnDeg3yck8s9QD9r54lYt6xS3fTwUZo3MiCfOcMM9cfrl5WIuTwuV0EoYeWGEuennfp5Et3CG38CkJTjd7iwBbsyvXh0cDYQJ9TYxM/CRX54pNnkkqAvP+qdf0zMvq1arhNx6aTyyWGEuv1ZOyO0SMHwyz6YS3udlLtnegR72dDCTFNf+QGmuTZ5ySNIjdoa+Xbgio3HPPPXjTm96Et771rXjiE59oNiW33XYbbrrpJvzBH/wB3vSmN+G7v/u78ZVf+ZX4yEc+gr/5N/8mvuM7vgPPfe5zAQAvetGLcPfdd+MHfuAH8Au/8Au477778NrXvhb33HPPqnpnjU7yHjltuussxShhHZsy/3puP4y2qoHiCjKmYJVc661GsgBwjhptb4eME/UqatIMQC2xBbltAg0s0L1U6deUukQGyUthoiuyApQdgF0rNjcRnyYf3NEDpO3GGCp1Lqrr2DXZuuMTyiJ3DxsATyg4a/FqskjN8+D0l53UFqVIVfGczRvnemyxWYIdyoZARJFEi+IBPbZ0FUutaOyJ4Dw6wgJUTGLjF7MquemqphxtGQZ1az0GUkzU3foYGb9eGyUDicakO/JRVNU1YsAx2KmO1D8GKhhsDEEKtcFgKgIj6b+TJJ93U+ANdBW8AdXjh4Zu/dXf3A5COa6PP9PynDFoNY6dc+935nExswztaH9GEi8touNOLbSZYPzMDPofd/4jScDo3KFytb3+vrAbsgMr6EPijMfd6w30PiwnOkovoyQklsu5uHbYINaXj+/wst7DdmdjFBg9kMyjCF3dIpJMzXM67XHz5tyCvwHdg1KZ8sjsoOi6moEdSfBiDCo2xN3NKp2pKvcH9qe4Ni/ZuEbSXQvkxrYtDGZinjSVwhtASeTJugJatEzNLs2pZlpfFr29mG4IqLzhDW8AAHznd36nO/7GN74RP/iDP4iTkxP8xm/8Bv7xP/7HeOCBB3DXXXfhpS99KV772tda2Wma8La3vQ2veMUrcPXqVdxyyy142cte5uKuXC/VSHfkW66fJFWZWs4BgNREmN3NMOAiqjJKQGpxUCS3nDoEINBVRzMZsGboQ4mWEFGwk7LYJhV4EGJJBRu4QTvGcElBh4KUc455oog3FUCqPcss9fopdVBTDYBrrp+TNJs3Uo3O2/pD6iEfldDbqZjBbNNPLkSLTYyodinqeqxePea1s8hXI5ha8Knz/QS1N9HFihc5tkfRhfUiAdK6jjuKn/1COVoE1xZc8/QYHAcaQ+RAbnou2oUYI9aHZbD7H413xJTjd5YAMJNF887RxIVzuJalFBLOMdhiMMN91CLszcQxUrgarV/QXpq2PQ79Xap70IEG/9bKedx630v/hN4fBYnScvU49RDNg82h9DZofZGGccrsw70voHS8b/FxOCRR45/UN+H5WTw73YsJLRaMGddaox1k5IGBrRrCOsli6CtLREQSpmkpXZmmgmmqq8iUCzZTgXr87VM2mzRniMxjDbQ0tuVzXVISDfWjNMdNFyqz1f5tcsGUu/QEQEvO13OVqSFrNHpVlQuaGkTVNKr+2eQZW1RpCkfzLi2o2l4yzuaNBZuL3qQ+39rS03RE6ozCqigA2LZ1SQ2ER2MB4CTy7EHL3kD13GhxvKBvN1JYLuACd911F97znvdcWM8zn/lMvP3tb7+Rpod0kvY4pSeK1T6AeueUmiBJfGh9ja4KdKRXpRs9f0ORjJ4dOeEcE04wO9Cyk4ySZgMr0cC1tJX2kOe4SyqoKh2oBKWDmoIOUpwhFKqdyBZiEhptrwKWbsCl8WPOZWpGwi0dOcShZ3vxCBDtpWbJzKmglA2arB4avA3oD2Epk2U/VnsUjY9irpGLHVJfzPRO1fIdSLD3xkGAImmx6KZcXBuALpS8+/P94LaXenKqG8QXBc5GwfVPUncZZgZqlcJLJuwgXa8qIgYBB3bynpnSd/qsc5WoiQauHchIXgAQt0ajDeqA6SZBlaok6S7VrGqZxF+rnVLgckAU78EJ94PqlN53BRFOhWPtxDqTbz/a2nBf4/f6oEKwVCUs7UPC2FM4h/b8HgKp1nZ/LqrKyjLktLYNp2AUP6V72PRPrQuAC7KoatJlTBQYYOjnvJH6NPV1F4CzV+uq1mL1cB8i9Zgq2g5laA79Wn5fHuM2c1tDttOM083eVDHnTXqySYUkzLom9rpiRFlVkWQR7EUsJcluzjUwGjEONYLtwTGnoa1JBCn9+8UAgYN2xuNMbLALeOmK8pNJCvZYRjEfeSZdRJc618+VvMfNFtXPG/z0QG9dHeSsrds7rGClq4+8Ie0EMe8YBUHZAZ6EWYAdBLs0A6Q2UfASH4/RbWK7E3UYmwW41tzD9EHYkSqrhu2v7tFar7WeOtCp9Sd3nUpR1KNpm+aFVCRaqO/LhDmnGhfAdKXJHsK9ZKhc/3ze4HyeFkazDFKil5qpXtpOmWMbxM8FQImLe/upcVKApdja66rhFlKW3nT9tdYKDzy0He2XFmtMr8fOQN+tr4GKtrgOpR1ah0mzaMwS69DvDHKoLqCDBAAaeG1IfB0BhsUQBoxDWv9NugK6blGnLGKpCIMAlXJwNNlR+26eAprUTz2scWxG0jHrG4HDIDUaAstB30RQw+67vED0DC5AEXWD5kmsbYyfITde8Z8CWF6gdg/NUHQAUixOCjH+zsA7iAe6DcvIOxDQR763sRY8srT5VhUEG9Z3WxexdlnC4r3/lnPDIGs1vACWx719TZUane+bJCRNmHKXNu+b5FmDvZnkBF5SwZFq67hzk65kUxnFUBGszhm5Rkej2ShJ2ctkwGht7jXERI2em6BB4KI7MoCFF9PUANg2z9hgRgGbEPTN9Y3LUy45UDnJO1xpEQHVrba71DbAgUKghdU8xRYsnlAAXR0SqEpY6k3WMPj6IMwAdlIsMuyMaqcS45qM6JxtSaTfyBkJZyQ6VNq1eCs1zkv3CNK2FbCci8ZZkWbDogi/uIUwp4Jt3htj1gdW3dsWc0D90UBy1WB2sgfyfK6Gs6zu2c/TApwwOFCJS09y5+1G6pewAEmvw4RrLMZ1u0DaWYaFTevuIIkARqvT6mm7vaQ7POsL757pGAde4zIMNtQiWhkej0WZ5YhBKXNfe8wIMHUGTQzc7f5bmVzDtEtu5wcZgdE0mh3EpEW3GOCI9jHePwVmQHV5HST9W9AIhKwx7pHEw8aQDs8b152wrEOWZRcRbNGfNz1vtksrYNVJHiLodMBGlvNglYRxGzARAygKTuLVI0Y9YuwxMNtE33lsCjb0/JSXZYrQuw5aCwZj0zlUwMLeOXX+luUP/Wb1j6p5td2YE0gkOQeAKUtVBbW/knsal5wEJ3kGq1H6eKvkBCRlOKMAmAxETDJdvCQ9qXSG4oet2aR084Bui6LXjKh6/SifyNihmT+od6h01+feXkE24DI5FVFuccLiZvh66VIDlSopqaqMKkHwTFXVOE6f1uxLkDIg1cqajXFrlNq9SRqqxCS3upcg5YTd0EQAzDX4TXsbprYU5CB7dN5AYMlHV9XsoC7DfUGdSTKyRVUF5bSMWKs0pboITKkCp/rA6sOmmZIzzsrWEkmpXnUkoivSM4JyEDe2RxFJlrNnx5Eima+4hbxLWkrz2NGFrOqmW5lRfIVcd6bR9XiVCWgdw11vbT9HW5FBuVqXgl6ySUnoYnmV+Ai83UNkegUWBVYmNFuUACQYpEQGKWiGUbIsHznu0F2Z+oC2FjXAsgBdrd62LvUxZ8IcQ+5HfV2jhHVLuwjg1oDMqH4FW7GMhPIRFDAYUKlKBKOJy3I/xVVlTcf+CUzKoeMz6MuMdyg9WRmwghBq2FROyQOMejL527yQLPbNAl/LEhSXrBP+HVQ7jspYO/jorr5+PTBsvfIOMxgqw+05S3u033Q/GJvH9cT61tQ8gGPqBmCGAEozGdfsyiZJWYCUyvhLSaaqmSXVaN202evlkyVrZWDQXBKwL32zHiUwbBxrnzm5/lfnj96/7rVUM0UXSchSQ+oD7AXknS3MbbkAyDOQ/OusYOVLbkz7WKOpAQZ1G2bpBQcrM1UHWvwQlSikFp5NegyV3AK8qYfPFlUKw8anemNOUoUvqnrRKLEqn9mmXPskGARoW2Y8YJBS2y7VOIsAQ83/0wPOVYlGDaPPb6C2w7F1WAqi6QCqrU5qrm5bywLK8WZyKuaXf142wOwlPPt2fDfXQG5mKCtpCFKUhF4sAZwxns2Jhsan3ZbyK4suywtyq3PIw3RdbuUcXwq7pqHNC12/SsYEg3EmcNDcfZGw7yKKO/7WJgAHOipvbQBFUpiEtpNUqY+g2ofwbnwEOlzHG3hJBGqofPUgSh3UtBvoMBSDG8cxwzjR2rlQ9UNzwXXbWOKWWu+PjMc67GfyIIUlegiSgMG9ijYm+nuojmBQpBhGn9UwFgUj9bvWrWBeC/n3RVDHI+F4FYIJOF4RZyJmSWiZfTAHZfAGaqg8M34FKWYDwjt9BhfLWal1T0IpM9gGxj+48d6MpEQKTDbTbJISkYRdM+TN4Xr+bsajzfOHgcC+TAupikZ41fw3DoAkjV/iPXf43sySUNq7IMJhMCr4mdtcsC2gntNYKaYyQgcuFbR0J4p9WS5a7N2kN4Y9fdzYm7qplinNU+pLnD35sUYaiY9VPpzV2PLmON/1gpnsSDhN9Tbta4TAZjCrmZSRsEgoaIHYko9DpUaxNaRwxoxqaLsbSFNGNLUFhSPW6o3fmgqr5wLapm48G0GQBoNT8KN2KjMydpjsBSlNKrKTqaUGn7BNHY3vZeMQf9R1FqmqnnOKkaL2KApSRu6ScQfQXZB1haWdAJcj6YlQOfddxeS04LGaxgGcwGQctXpsMWVJB12PZpWoDMd7kKRhndYR90n124ABxwX4WAwYI/AxTxLqA6Hf2V059Ek0FwODjlC37fL1aywnQYIQv3BdaozFHj8ldbsUBzD8fLMKZQFMotQj0gjQjMpHkBaBGPXTVD6Rkr9GRn0bzfVaP+KjtDJI7s8wNg33ZaVJpg5QqiRlIgmKAAuwkHM12u02c+N+RnsSAzMYG6MO+5pLvzVN8hXVvBziYCFRajQ1ydDJZjaGqzZ4ewoHryBG1V3aR+6nMnk9tkExj86+5nVnjrXYIrpGqoTFJM9NkhGT8Co4tACovHkfqJ/0GpO+IPlNqDpVkMrJDHdDTBg9r6Qb7hnKy/LD8vgBLjlQqVkZgWpvomqS3Ba3sgApSjWHTgc1SictzgoAAynbYJNyhbyKpgBSLHOxiH0HmrcOuv1Jpuv1e07dRqV77CzdfqN3j7bvXJnBdSUzwFUXt51MuFZOcC4TdrKxY+r2VvtcmZ3GA7AXphnHbnKxCINFksvXEw1mR2qeSItYCQoO9DupGXQ3a9gvy3LzTztElp4oQFGjRhOrLxauvqhpvp7FYqvHpC8i/jzWLccMSA3ODUFC2DmTKsmkMSlc18LtL/L1KPNvgEQSkJrbr9aVVOxRqN4AsISZ8+IG1O/uUKL+KkNJ0oFVHLNeLFjWrXNyyM5Ex8pjPszzPLHRc6LB8L3QOSBJxqL90dzwb/d+dKlItLlg7bGdu2Bs9XUR32dZgzc09TqmFRptMPj9LQXIuXm3SwJQkFJl8mXtfQm0BlAiyDBtJq899O7beIDhhiShM3ig2tRE6VJsf8oFW/IiXHMBZgCgqnSOALssn021on8MTuwYYGlHtIz2S0EWG/lmrEQg5j5KUAmRdEc9lTZ5tjgvdj2rqVQtFGwZS6ph+dGC0d0oXWqgcl62OJeEk7S3IG0aA0WTEOYRp6DnjstMAdyo1EJBCodF1o0gq3O6+qXrD4tIy3BcPXgUsVaEWRckfmSL+54MYABoaiCVqFQauTGj/d5Bg8HVOs6RcY4OTq7JiYGUnUzVq4deSlX1nFM+iwJvia+601EofH2JWJw75Mu0mLjoloCBFCvTXjgBLeiouyoAVUXkwE5rpDGUPFiARSrTT1PfqUvpKiT3codFy2XQ1U4HpsCSCBcY7SJSJj2QrkgSpJS68alNWDuHVOOOXMSRgCo+1oKhLv5u6qQ+vTakQ22wkEiyNDUU9VuZ7EjaExmLSqwgfX5criTm4L3fFRdRR2LHWYqkbTpJmAel16Xy4bE1sNLtQgCTCwoBEI1U2+/IeB4OjFenRpMOMpkUKtS9KlFUEGJlEkrxahO/EallnKcMgEJrSEo+eFr0qonH1rxzcuhzobWB24p1GmixerqNDddZ6LqTTTFJhfa9SFUHqbonkaRhFGDNor6WjGtzzyIcJTHSNqgscVYjXgGGUpTSPkVSk64nk8qPpCz6m9vtQd04A3NPtHjTtMO2uV+zMS3nBGIHDLNfaXy1zDUs/+4CgDqiSw1Udi2M8Ena201R92JAjWlHEpUCNek5oezIAIEVdLASg5wtEhSqp48IzqVl1iTT3q6GUdVLzRWhAdrYsDaqafRBrQa1TZQozeYl9EPjZkWDXJ2nc0y4Vra4JtsmTWm/y3aRG+JcwU0LKsSiTdZ9npdpAVJK6XFVGPHHoEt+EQGYo1cVCoEUXd/bPYikCy0DEdvh6cJtTLj1pS300som6QtskWa8CzSD3U7OfkWofzbm/r12Tj+VOa9wdt6Vxzq4rjZNBlJisQTIIgZK6AuDJ2DsOaS/AzOMUmrDXUMUCpO+SEP3kgdSHipv57iPYgNrUp406G8rTK/8oh2d//Z8tULLPhc/Zi8BwfAZXFAad9NO63NKlVlcF5CBrc5h7CaDZNH2+jNUseC4o45hBxxsPwPg5qzHVUW7NLKN9Xd17lI1VP+Kefkx8SO2lIr0drxkJQG5AFFawQxZyyZvPzOsr31XKcV2mi1Oihq4lrZulFTNDPYlAxk1ancrt0kFhewyimS3eePNHm/m+NHXNZTt/XKCqaB4xJYTLQlK44mb3JPlKg9bgCmSlDBI0XLnZYM9xKTstVxx4CWqiiBAEUpSWxLOxxbQB+mSA5UJowR8QNOLoUX7Q3GAZEo9p4KzX0G3S9HvgBp2tULtTa7W2hWcTGE7MgMGQNhl2OpCq6NJOzSLMrCUonDoewYxuQGVKG7UugpaxmLkJjHZYEbCNVHvnipVOZPqqbMjFKyiSfXqqQgfljFUEf9unsz1mEEK7wJGYmEAbQezXKCqQErBQ7tu7kzFJYTjdZR3v24L3xZH+EVUz0u7NqVWh6k+0JmDcmIFOAI3FgUVEcC40PJrdOObC9oKhvG2MVmZyFyVCwmdWAMXscm4eh7omxVlrpfggJiCh0UOobW+6GeQ6qyVdwkUtW2ux12TsAArkSLY4WcCGiyvB3TTZ45rdXY1XJeTjPT5EAKhY0+gCJK1J/Ss44C0hOrr9iwKdohhW46ffpm675vnWxJCFxXQ9DhEHO+kMejS1wYGOWyga+0P7o0a5+ZwnUgCprK4fhS7ietg6YbankT1ydQkDUkSMhLyJObluJsn7FNVies6OZOa/HTae0Nhm8e63p7tveSaifsdQVu03xvNmYA8eEAg5KJn3soW4yuWzbk9OBtUtU7tC5kNNFJeVcdcQdZeHmeqH87jw8y+uh5XVYvm/TGwEtQ6TGyXMikQUFQdpRfooe+3aGH0Q2RZvR0Tqo2Kqo60zxzBUMFJBCYjmpEwqUQmHNdw+WqXck22BlTOZapApf2dla0Z0fJDprYo+p3BCZq04Wy/MYASbVEqyFiCFGbkavQWycVLUWa/V7ujdp6NL6fGDKhtt+i3gz3QlTeKlWDoaguq7cyoXq2LJDy8SDibAjaivY4FoXdgWe+CRqfG0xlEQfx9ZasfmegA6IxwkSvP06/raJP+uABu3F6iHw5UtdMKOhX9cPRaZfQRKBpICeMejjkel+W1CX1LHupUO6YqQamT5EDDAKREz582UPcOqFGsuRfTvDiwTEBsFP02kqlNVwyraxkMvWNGxq/a71HMolF5ff81sq16EpkkppWNd4UBTV75DngDUSU1jNX2o9uuXr/NBdtpruHiA5CxulEfaTW43TXAtpsnd82u5BYawudMK0g9lIPGmirJeUdFFbq2rVQgVYoU5mcM7PyxkfpI+5WRgNKOZQUJ7GqdnSprDu/UKPcPz/OXPCnhY5FKiwXCofPVToWj006pGBAZJSVkkHKCipxHEgutfxo8DErqdaOSFaC5MJu6JzsQoqBCXdVGfYtjnloOCBXj1ePJ1aOqnh0IqDRVT4ybspeegpxf4KgzBepDPgIpXs2zBCkj/bP+BlQ8rGoXtJgn8EaNutibqkLQ/xPwCAzXjGfbbdAFQadbDWwNUBno5QVav9Tzq4GlmAHF52QtP5BeRwv/QbASr4uPowMA9Dk6fwFgScxg+VFMJKCJpABFd9o2nU0CIaSSicBFfDnujx5fgAgaizPOjfOwRhLKRCkLA+tY1s7DVIpqjGxSkevAql3iQkBaUOtKZF8RAdlqhYePN/vpYTXLkPk0PiiggMmMlkHUerloANzLeGSrhsRad71mZORZP6P9G0sK2CvJu0N749SIyzV/D7sYx9gkQMs439ZAjRXF/dFxzCVjbsCLXXc555mqc0rJTaupQCUv+hfnosjSVkfb17EndEmRtS8Z+5YIcZOKSUU6YKlGBF16MuJLOj8+QF0k4ycNnJ3PjzPVTzYJRZ/EnWxaePjijEsvIlX3qBTlSvI5fc5J4pAhOG8qpXNdNLUeMq4tVncnDkHMnxrLhMdiSZ4oPQB/Wp1IXfojvr4dqofPTiacy4QHyykeLKcNrGxw1uKm7Ep1L1Zi8R0HGjKjLumiVP2uL55IWoh9/UK33PFZuZZpWCRR1mEQo1TuGJiIE5+7qhdtpVQlJjkLFkkOW32LF4/G70BKADQGrEaAJPZvhcFbmUNghRlxZNqHGFlksgF4AMToi8+SbN+vYxgGUgZMWsGHs58YACnzPAp9V4PT4RwxqJJw7EbAShv/QuWjxMH7tDxJJ4w56xgulHBcX98u8pS5LrJnJqim4CUWo7xXN9JvtjtbgvqYmHC5cdGrgcrsJuobSzmiN0uM12Ls3kC7YJv8JnQkieAYJHYMHeToho0BkMYv0WeyNOApsnFzyRnjtS0bM7WrY4tj4nNrYCWOJQM9/grRvklIJuMvVd2zGcSEYdAR+x37x9ew1+j5KKjWBXS5gQpJEq6VLTgLssvH03L1aIySKLVgAKBgpUpTKhVgYUeSIdg1eW6BWBh7ILoHV7WPGrgCGtK+32iWpByW+PQbPPpe3a4V/GSLPLtTlU/ZNqByspCm1BD4G69fDC+q7hr4Matu1dKlKySuXAKUJfHLW+Zs0hQoSNFFdcCw7KcytUOkIAhBPB0WCK1+JDFZMn1mpN1+5bDU5HA3O3O9eDyJ5sd5/3A9awCG6wCW7ssSJClDwOGGv2wvXnPoPh7qZ6jfGdoGkMIgy1QYei+TXCypGt1jPeHaSg2sBCao3axLgwcsXK0eN4No6QxOunTPgaU4l/p5wTNlbvbtfnbJTABi7hqtmAGEKxHKMsgB/e71LDcMy7Yj6ODf8Vxk2mb11tyLi4KP1h9Wn2T00PdLKUXdjO2CG62uh+p9w9KZOAc8L8XcnZNJSWTlGv1tai8d+2CeeE4KqlGwzgPzLr1+lmTSFa9CavOJ8fOgUhUGHP3cmJf6671ZwRovOESXGqhMTV9WDUVzi4syjp1SkHEugCYNnIjxszRFaW4vWI9HJcNFQcFKTj7QmtqKsAGskrqIFdTj1SV6blFw/S6yG/hKOLa826z2KS3sf0EFaeeyMbAylKa0gG1RnBoDDekLavMq/EIms+7Xa0aSh/gyK8AxT5vRw7xcNx2nFBze3ZlBbVuwS8nL2ykENtpJtSNgxmHieS6rndh78OP6b6hivZ8L6UCsShmcMsoDZU1NEo5dCJaozqaptK4pNnCPX+DfRiqR0eOZblakkTQ4gi0FKZnO800cgYyoKhkR379YzyEApdI9TnmAwXPIQIkniMBCyu0P/RgK/HtA79BBEmBhVDsAqfzOJCwZZjd27QAkgpFoazYKphYBxrDLMqpzfJ3amLGHHgALfAl0FckMHyNFzwHACdXJsUSKJFPtmM2MHffqoz5uD6DiOaduWqxvvmwCnOoK8DYla67bKlkxsJK6ujCCsREVJPOYKilhL51P6RytqXis7gvUQFrPjdKlBirbVJzIq9qVtESEyYcsrkx8apKSYqH01zIiZ/F2KAxWLOJeK6MRYAGWpIzdjHMSbAl4WK6H9jBoeHztx43SjIRzTAZazilOinr5cIA3fvj4RWW7lEIvqYESQvQmaZHkwm1fJBVwAGeu8U/U5dIRG/w1xpBYgpB4FwcDIwZiePfRDsqchvwrGteayqfZyTiQov2xsoAFIOONxto0HAAiTq0wUm9QvS6RH59Hl5jUoXigcNhNOPWyNB7R+S0H+GUSy11kwCq3e2KgIPmwJBq8zrqrF4bxZvTnYe5tRADWh6qIE0tgw4V5vMD6vEQaAAlvy0R9X7wP4x0sbDc9wF6i0pnrAysj4lguCoqE+l9rj0CDdvpUbfU0TQ5oLNsbACU6zkCGQY6TLFh7VTqRWm4ztw7p9+ayK3SebTVAxzdNOs4hF9geT+vmdTCClCiNiZLoEbBYJkr0QCdSBC45d97nDZSpz1RX3cAvjY713GgMh4jr5ev009Z29DgrF4HVQ3SpgYpmTwY6SJmaK9VEW7TS3JQ16mwkVp2oEe2UxElVgMNeODnGQ5HuIsyJBE9a1mYNfd+yDXV7lQZ+dkGktmhblg+0xktRVc9ONmZsXIHJ1hII7kv19NkNMlrqbiIuAvEFLdLVQVWakoaJA4H2kCY2zmt1qBSGGZukJRiIXh66oHFTcVerO0KIARAOsrUGpMa72GHRXlfLkGwh4C+iEUhJdHAkmmfwldQlls5ZNWlRHqkyOHddIvDSN7HWfCr9t2PyEvhrBG3t3in2tw2yfllbBFsbyTHZEYejzxEoaE2lQkWIKTsvoYv2AvqMjcAN99ue3+V7atI07rfOjc6lwKsmk6wCfqfqXAOZKkmK05jgmCYbjgtQNwCyVKQKuleP5sSplA2s+D72tYONaaNhLUtpNOgagyLeLJraudVdo9xiAQqgYRQIlOxbmZPNHgktxcdc85JNuZgXSwQZbHQbQQpLKwDvpROlSqN4MSOHgjUaqZQWdjWDOgwYAeZqbX3SeR8AiTWgwaDmEEhxUhg0Q2d5+GDlUgOVmiSwqn2qsdWyTJVskK4x7VHdqzxCZdXKyNPH6gsPmwELpIUkxBvJduZwSgxIw/DXAEH1fESzqs5Ro9nOAZpLciunbsj6d94MaHfDv9zipWh4/C4V2ZP3DVM1IKsudGqlPpfsMhyv0Uj3bIGg5kRGtIDp/5V4gVewo3+0OWTpmqCVVRkKMVm38+U+h92iA0uSHEiyTimTGkmCeOfqAFX4HJEyt9h3m4fKPFIDR0PJDDPxdp2zSUmAT8TXK5EELxXSrnCuhgGWUKZrAspE5RpASIuxiA7IOT3VqqkRN/86LwQkH04aEXs4sLx/Nqhw7qL7NwJxisAs3cHyYpPmJQGyNyZfBHuzKVgDfQHkDo6xhFG7KPQsOUlAG4y2q9LXKGHxfVz3jGOpSWe8/ZwyxJG0YG5JAudmlCntvHr77IuGk++NzyVZfJPtNDsJDLvZRrddPa+OA0q61vDx7mBQpT11HKAxcJ39mjQY55T9sZgvbc3TRyVH8XHdUDwYG0MAKFFlZWCDwIoCN5a+Wx+xtGFx9aa23FwgrRnRpQYqaotSJGEnNXrqtiWjVmNSK4uCGWKZjuuxdUDiQcdhFMjJl5R4z6GJAAFgi7lJWtBC8C/rUoDDRrbnzXdoBjBJqgasLbuxAphzTAZOqhRlY/Y77HqsNiwq9dlTCnEN8Ma5KKKF/dwetn3JXZJyYIpUmpKzpmZvdSlImfNY5QMsmEFqzFXdNNWGBAk9541KUmjXpu6dCyNZ12ZC2s4GPMbGtMkzywBSFkatOobkKlkOrPV7SHyJgh51ty4BfABd7cLXMjioI4XkUusJLt3ScicJ9TvtCRCsbOKEfzemyHUYSCn+eiuj5wgIpH5LCWQqtwzj4r4legBGQHHwrKm6ZxGEToHU4r6Kv2drS0VoP+mzqs8Z0CQZdXySFES3yw+8W85QlrumN7AxwQX70ndGlnYg0QunHtP3Vm0Y1vt0vRQ9i6J3SyZ1hwIR27mXBEk++q2kZKAFAObS3ZRV8rufs9Vj5QA7p0BlBJJYjcRSUwMkob+j+C6qKh+BGoRPzd5cLTH7y2CAJEg24iNu85i6asvfAFgQOx3fGojQGFpKs6yoeujT4smENqME/3roUgMVBSIzetK9Kcuq54xSDP42rDtISJYB39YnO3r0jM6fiwYCEnfcwjM3SYyOT79v0wzLGk3uzPVlYwNaAk3SPYBqfF4K6iY1lXj16w8qH5C4tVFKYtFnZeXBjlb6KStIqYug2Itad3CiCfZ4xzd66xpAcCof6W1yDBVp+V1S9ju+hRRF62BQ0/pq3HqNAVl25AoOZJKBlAIW7GwodYlbHz5+aOfB50fAKPYzUZ947rQO7lsCZKJcQjrHc3cLToVu1+CW1fpp4gjbsUpJ7wcLrGxKYj8ZtTiRN6p0STN7YlCM61I7l2BHA3TQp9/r6ynB5igAFFl7QKhtfWalxYdhsAJ0SYaOlUHKSDpyHWRqpcifDLjAgxR75rX5BnT0dKmKapGpZVP26o2xAa1vPLo/qxpJmWkETSY5ULVQW590c8RrUL1XDUiVBEw9nL4CmF1T9yjt577mcaiCtQzLQPOeoTpyEuSpu/ayKkjXYZ9DqM+FqrZ0vjQzcy+b6Fzp5WlmWVLCEg89NzIkztRuAYEx4l38uaamGgEU7R8bOde6r8/+ZUSXG6ig22QU6QlZti1cfmmMOZIPm78EKzvktlVdSkvWAAobzLryA7fjIgm7lFFEas6eNA57r5KQqr7SeqqR8E42rh1A3bB9/wzEoYc/3pVpYSgr8ROsb+zkrdf7cdvV8cIFdGBhFWiMFJiEwwd0I6bamP5CHQO/OArvdhn8tN+YujTF+hkj+DdmUmbaYcbdciRB31o6MDUoq+VHICm2ERnhqJ7KnRd6b2PabgsvC2ZnGXVZnu1WP+nSIbW7SeigLLW21oxqW/1J0F0xGPwxgKGYJMKXSz+e2n1NM3piQ4cwadx2XXg2ArhhldNBsmeS5pA/JS1FDIewi4KVBmw7eBarbynNC/dTvw4ek/i+yMDWSMH+Iqw/Pw4CcGLDRHNRSkI+EGBUJR1j19sOAqYmOdlOxdQTRVpgsP1Uk61apvNopMpt9e96TkRtstrtEGCeJ8ypqoBUwmsqaPF1ViDVx8L1MxVJONt384IInhZSIyyBWZVYZe/U0UCWSlDYGFaJA7mpdMZJntoxnn89DqikxI9F+6O/ebOqfde2vc3i8mF0UijxNj03QpcaqKjKB2jgJHWDWsgwbzKAytCnNC9y+midACxTcY9L0pHqSGU0mvydeD/8ScFTY8RqZKRSFVb3KEg5F03yVO1qNDkhAJzLhEKPIQOaQoa1Hcx1KcquTN5GhYCLmyt6WcxYDMtFo5YJE6AvUVtoCktS2uK+8LIBHEMYRrwsaRn6m38y6NHtYWsrqSupZovjcPxaXAEUsFjg60BS/zReR+BGhBghDjMtPXfRu8srBR9budZUGLGOeH1k1LEuA58JspEK8Pbo9yi33SDXUbQaWd6XMA9OgiKHBQcVrADmFsx9Xtx/BYwyHh/v9vW+O5BNRtEEfJbzN/g+ut+LY4oQ2uUNFADwalB9Xt3cJUR7KgUco/clBp0zAKFTM+prO17BYg/lH+vWwoeMJBk8OK8eOqfgJCXBfp6wn2uSPqAagQo6mDC1SpMwjD1ttI9trgZ9ZsPe3NQs0eZGwdSs89anhubBx4+Kc8TjzrnOY+E1hmguCSXwDQZxTDECr/Z3oSYLYMHaWgEMTqUDz9sMEPG8D+qINUcpz43SpQYqShME27THSfPqYduU+rsa2sb4KqpCyRi4BFOGS4DUOAPGEOOajCQrMUaLqpOqJKWf0yzHKkkpA4mQAhJV8Rg40SBvSBYu/6z4nD675uljiQcxkKqghclv+Scq9TEx2OCw10x9R9WvWZzXrY4ihAEN3R7jjlPgRdm8+9WdFS3+KTdYwdKQhdQndIkSFhpA4TobI5FJ+jPC8T4GTNrafjjkuqvAiKpd7PB9GYuxInDGuGITu9IxG1eb2zbfovU0xigKVoZjHhxUkMLNi/+050VQXZPjbr3NcbLnQTpoqb6aWBjjWhlqN/E8oN8/7ruetuds5f5qWRe4rT5LMudQTJbXXbT7JOnb0KhV39EA7JUpS7k4xgl3R4E4e+/FXEC9Lx2gsIon9qOqZJJlYy4lmYF+SsCce5ZmrU8lE4nGr9dwGZX6OBzJYClINaJdikjqICV125boPMDHIthR6ZNbJ0M7Oh72GtLjQPNS0v7TPDJoiGoYpij9WCsn4Tw7Vai9ibVHdXCfcxK/rwsg5eHYvF9qoFJjkuwxw4MKVn9MKEBio1oCJE1dNIlgTmLSDAvNL8lFke0gJnSkHV5aOxfncdSzMSsIaX0JMVz0vGY81n4X5LbmdhWPAhb9rtddkxOLQvvgfIKzsjGX5NJAyl5qoDd+wBWkVPDiX8Y19AwswUp86dngVtd0zr8ztM4bHRptafQ3Yaqu4hncMz1PizfvGJ0dizEkqssi57ZrJXlV0kaQNo1TlwTZp8NMZwDE3JgCKFtcG0CKSVpi/VTGwI2WjSHhtfwAmOu8JUmufcnVC0lElmCFF2i6h5H/1/rh+6Z1qDoqYqlCwIzBChkGMDBz0rKEpv5Kyzmz9lMto9dlWd5LKx9uWKwHWL8/8ZnT74ewSgTta8VEn/HWJE34QkUzeLdqN5LfBASKkghWo6iKR9tjFXIpCfv9VGMp6Xn2GgMBj6l0tQwxv7l4z0OV5HpQkugYEAHKyNW3NIcBoKqBRCqIKmG9isCC50T74G3lvLdPBHEiyWKlqPSFg9c5fqcAT7xEfBjfBZ5GNige9FCfm/HyjBVS0IQOVnRsDFYeDl1qoFKlHJRIL3VvH7Y9qRFrNS+Q19lVVUwBRIOkZUySwH6Yo4zGCmBmpBobJZyzRIGtXAQpO9lghwZeCMyMQIrvQ5eisARFr60Zkk/wYDnBF+YrPQJtk6ackcrHsndSNMGRGJUfflt3bXFjALLcjQBiEg0JL0pfVGjdHzFnAFHiMTSuFEBozlySNy1auvjWdpkjAGEMMi1BSoZ5wcgkZkSbWj/StmDaNIt9ZlCHyAGtASO0QXWmLMl7H5h0ZAXMLNRBPM/ad2kqD+4PMVZ3fanMS7JYnBuVrCiGUeZtQ6J7zcING0ILBa2gx/WV2mfpwyLabpxLB+LaQ5HQG1d/+5HPp9XbzmmfnI0TAZ/RWszzyP1A6EcEvHyNgow4XxEEcrOpz1MEEb3L18E8FD/Zu5n6e+CYK7WrEpvWt70klH03wlUX41IS5v1UvQd32T/3SXyKgYn6j27Uqj2odRekVNVFJ5sZGkahFujB5dlbqP5O7riOh70US+nHvNpIFtfyXEfQ5j5BXjsEXAA412ZgCVIUwLABK5OTtgCLdR10LKbfGTpK5IKYrZnHOWqb+6WepCMX8IvoUgOVvWywsfS3wLn04cxIFvjtkHdPLdu8aFxyw6lJMQYUQtpHA1azY2kgiFVLpbVn9iW6VoYAdazSUZpSseNqm6NGt1WFlC2fj+byUZBSPXsmAyim8sE42mIkXi9zqnk0WMzpX25U5pT9YiCox82QtvRrXCMXgZTwnRfrkS7dMePSFpO28NsCPrpGz6lXElAlBspghK6d+jhkn+uuQ1DF+8xIDFTxOMJ4ecevnwN+YqBCi1M/e6H6p4axUioYSZLsu/WtgZlFOyyVioBAwUrqdbTXyY+Fr0n0x/Xp1Cg/ibeaGH4dOzoAS3Xsie5bMuAqy36rQW5PdOKlJrE891uNvwXL52btOdKxOgDYJ8BAhWVbXJaJdChKsjHGaMsV+8bXjQCuAx+1PTVQ7fYeUZrKQKAOXiRhv5tMKjLvp64umRNkn0kVW+9NyoK8qWg2N9AyTcXATiGGJ1IBg9qtsPQmJkt1m7ADftYXRtgmCWxcA6P9UP0MQBJjb6eclpFo9Xo1qrX+Ewhhci7H6FJyP776OyZIjG0yKZ5fACaMpT3xvGaavlG61ECFbT2AOiHn2JitSvTomSUjIy8i19a6sql9NG/Qagh7NYilfowMbHMSTO1pZwnMtbLFDjU4WzXsLQugor/ZroZtUbTdcwvyVgHLg+UEZ5TPRz2i1KtoaJMiXSzYxbJYBS+5iVVL6Q87L0zSEm/lAmPKC33unPwiC/hFfIVGUS55IWGPl1FAN8dgmvutW8wjgGh/ZseR0VUea7RPkHlauik7EEVMMYKlEXMffQc84IhAQhlNZETSr+39wnJMNH79nebku1cfGl1127B0B0n3hZhzEjEtSXL3qM5JSuJVdlougMTqLi3Lvqdw20u7rm+olwBgbY65GDN2e5boGY6pDOI8xmMJ/fpcYOHXbGIGfXIgZ1Av05qoXbEbvbuu7lC2q0m0zdrP7m2TMM/+4hiGAIBJTFKW+v6zlNLeS1TVqeY+SoKUi/Whgo0lEGC7FQDYN0NcDUhpfaL+6FhW527A2Ptc6brWwLBJRaz0wo6n93d8X1SgN7UUAMvzIZ3AiqTEJNtUbixN4fU+2fTH2C+HpDw3QipleThXX2qgovYWljktVcUIAIc6lSqgyJhRkJvnj9aj50FgZUQGYGRCbgHXANqYWV8a0GCA0hIDMkjpkXMnakPaWHoddUyzM+jdlS0KenbknUx4cD4lgJKgYfL3LfmgHvPzOAYkayi7iFrd68vfxasMHipOocUX6F4bMeT4kOGMXJPRFkpx5RxYibd+xKhtlwPa7aYObiT1BdR1gZjRiLmPaMi4woVORbFcJGM9HNwtjexw9HcYuwuv3/ovcde9AFfte0EDbf64oLoNq9rCEgc6YGYdh2ENtkXRc+0zzf06e1wrd6xqphEgYIDChs96Wp8bSW1r2PuzoLXVVO+dglAHfjB+JlhSEEEeah2i0tU1CQ1LvuL1bZ6d58+aFBIy9LSLXkNDu5ck3Sg91w2J1q8xkSAw4F/OJ2fLBVJZWr8mATYNyaV6bdqU3g9UwKNeOTpgVbmwazKQTNIb1Td1jOIAl4ZTGIX2bzNF42Ok0YCArm2tTOJzSVVC/QVk54IYebffBwYF44cwxiqJG0oVFLINjySxeCkRoCgxzzQvpbhMDSQpTCKJeOGy/w/HNRm45EDFcug4sFLBxywJSHkoVQE2QOoSF6diCQawSiYxSdp2jRDb+9IkMig4wdw8kYpzb47RcpXYgNe12VRMWV2uAeQGyHaF1Vx5CFJ2ovFSuqePqnt62xFlj6Up8fFKaDucJoK1AExtFwXAdl7qQdODuw2Yg3rVuJcFUD21mMRAr00OyMQYLtp+rSgwfmUmoT0zvm39Rem5e1zE2QWgshr6udGO+NBLypIeAC5irF7PNKqKQYmTUgAJaVlu0Yd+nnMWGSiamgfJDJ/HZ4LNF7JUNZiCiV3yYfcVKLSxSmqLc5wbZu683rf+SRLv2aT3LI7FfiebC5NklJXyAQQtEhTqWLVspCGIEg9omFywvTWEFK5N4bNduwipT30Zqkivh2/oLrjdt/oeayWwY30z0t7L6GatzwS/45MgT1VVowDHJCdqtCrAXKYKKIIUt45r6a0DAHkitQqtFdEjMRq68uQZmIHOIY2zzYl5COb+eCWd7/DwigDT1Bm9s5ds74ZF3F0BBFGKHUmxM4OVqeUamks24MXGtVMATReBlBFFg9mHC0pGdKmBig82U8GKxi45SXtAioWoZ9WMhphH7hIPJbVNYcrVraD+cKAG7rpqxJvMlmSLZpGuoIE8dJQ4dw/3JbcYL9u0X82mXG1dNpZwkA1ndU5mSc54dl/03OAB1wdYI88up9wNu4IQskEhC3lbwyywGzpIcZUtmdTQbsSux3JxTVIdu0gc665nkKPHOZCcAaBYDl3aMGhzdWK4Tf59iKLXzfXGKHdtrvRPF9JYpaDZdaTO0BoIGNmqVPAhSCV3m53Wd5lam81YWbbNyFhLsf2I4sO2t6iVrIBM0CPC/dcIuSYlqddYWV3MuVq1p9F+6ZxrmQP3yIXXj5KjxUTBP0c6UYnmYwSqRukXYhn+vbifS5CiYQB6AMQUNgODyM2jNvi9sra6sStnM5fSbE5aH6oNVw1wN/I2ktI2i/sBE2YQpPOqkhmtX9CDAOp4CPR0qUlajrF1sktnonNABysOoAzmWwqQcuqvW1OHpVyQs9rQePDRl6rO5EtrW5Mu6lyNDHX5k50TqgNHL3dIkpIGdcZrtX4GPw+X1iT1h+hSA5VZMnZlg9IY/RYNlbbItDWSXxnaj1RbkZMuqUAxELGDN26dmj9tzYvQ8+swaFEvnCK5AYwZ1xpgUPuR8+ZZxGof9hACmsdQKgu7lVH/FQCpTYqL0guYysfsU6Tn9lmgdMAe5hFIMcNZkB+9JMt+DLRFT8Xpi8oTFgu3nhsyfVoY5rZYqNqIF0cl+96vW4ixabvjxONxEdb+kZjY+gR/aHEN933tfR4xGWZ4B64dBnG7aN041A9JXQ0CdIDCca9buyK1XI0VQ0HetB5dOOdk5ZSBLDxz2jgTG7AmqUJRaZXGZ3QjHSC0vqbSw5nHx8hub6b7oeDkBtQ+ClB47rt66wC4iHVyoLoIkq938b/esg1IOM+60WX8jjRGFqVLLgDdYBNhm4TWruh5Uv+pvYm9e61RAzXs8q9LhUVGDn2Oqspcj5l0ZpoNEFgfE1x2dzecJJgFWPP8uXCTQWRRgF0bbLVdj6yBjtpmc02mxIRaOrowR6PiNSnG2q1fYF2STvHnGrgY2cZoP7kvDwecMF1KoKLBmL7wRcG5SAsbXHCaZ1xJe6R8jpx3yBDsBszeSzVyk17UF7u7GLfPVLBNMzaYcZJmzC3Xzm4RVK4G7Jwl4+ZcmhdjreMcCddKxplUb5tZBHMDRqMszrFNze+jQefOBPhiETxYgIdKwQPzjLOyw1kRnBfBXoFKmbCXUuOlFMH5LNhLqTYlUr2HzEW5SVvmUnXPainPL4qg6TtzqaGoS8asIMJABeWelubh02Ic8ELkKuW3iHdFWo1epwZ4WXqsEl5IlIEtpDqpXqttT9Ij1Ar1X/tiTI3q1b6O3m7wORoMS0WiHUlc8HkMEuaJHpEUzsmeGBczv4vIAcX+F4PH6a5QF2CZmspl34FKcpKRurjLNUC2pYKUOSHtmwooLvypuyHLRqpkRmqdPA6Z0KU0JFVLczKXYQdMaK5GiSJlEpPKDOdOlsfYvsd28OQ+68Y1sG9aBTXaJkkF12x79Pn1A07L3/oODSSWpspJurkQU8s6qWcC0lTGbVgRofter5VC7WeBWpTVP/9OmFFtBO8SPhW4NG+g6Jadplp7DRdQXKwPLavuvFJ8P7rnIlpestLUTB3UuEfBMWBcSKm9V5xJwq1Rg3utRsRVLUYxYQZTVPuR7DPa2ywlLksVjvaNvZByosS/1LKNYwA+plQNgdVWiPunWZjLQ2ft2HWCcwBJbqT0Y4T+1//6X7jrrrse7W4c6UhHOtKRjnSkh0Gf+tSn8PSnP/26yl5KoFJKwb333ou7774bn/rUp3Drrbc+2l163NH999+Pu+666zj/jyId78GjT8d78OjT8R48+nQj90BE8IUvfAFPe9rTkA9ltiS6lKqfnDO++qu/GgBw6623Hh/OR5GO8//o0/EePPp0vAePPh3vwaNP13sPbrvtthuq98ZDxB3pSEc60pGOdKQjPUJ0BCpHOtKRjnSkIx3pMUuXFqicnp7ida97HU5PTx/trjwu6Tj/jz4d78GjT8d78OjT8R48+vSlvgeX0pj2SEc60pGOdKQjPT7o0kpUjnSkIx3pSEc60pc/HYHKkY50pCMd6UhHeszSEagc6UhHOtKRjnSkxywdgcqRjnSkIx3pSEd6zNIRqBzpSEc60pGOdKTHLF1KoPKLv/iL+Jqv+RpcuXIFz3/+8/GBD3zg0e7Slw391m/9Fv7CX/gLeNrTnoaUEn7lV37FnRcR/J2/83fw1Kc+FTfddBNe+MIX4vd+7/dcmT/6oz/C93//9+PWW2/F7bffjh/6oR/CF7/4xUdwFJeXXv/61+NbvuVb8MQnPhF33HEHvud7vgf33nuvK3Pt2jXcc889+Mqv/Eo84QlPwEtf+lJ85jOfcWU++clP4iUveQluvvlm3HHHHfiJn/gJ7Pf7R3Iol5be8IY34LnPfa5F2bx69Sp+9Vd/1c4f5/+Rp5//+Z9HSgmvfvWr7djxPnxp6Wd+5meQUnJ/3/iN32jnH9H5l0tGb37zm+Xk5ET+xb/4F/Lxj39cfviHf1huv/12+cxnPvNod+3Lgt7+9rfL3/pbf0t++Zd/WQDIW97yFnf+53/+5+W2226TX/mVX5H/8l/+i/zFv/gX5VnPepY89NBDVubP//k/L9/0Td8kv/3bvy3/4T/8B/m6r/s6+b7v+75HeCSXk1784hfLG9/4RvnYxz4mH/7wh+W7v/u75RnPeIZ88YtftDIvf/nL5a677pJ3vvOd8ru/+7vybd/2bfJn/syfsfP7/V6e/exnywtf+EL50Ic+JG9/+9vlyU9+srzmNa95NIZ06ejf/bt/J//+3/97+e///b/LvffeKz/90z8t2+1WPvaxj4nIcf4fafrABz4gX/M1XyPPfe5z5Ud/9Eft+PE+fGnpda97nfyJP/En5NOf/rT9/Z//83/s/CM5/5cOqHzrt36r3HPPPfZ7nmd52tOeJq9//esfxV59eVIEKqUUufPOO+Uf/IN/YMc+97nPyenpqfyrf/WvRETkE5/4hACQ3/md37Eyv/qrvyopJfnf//t/P2J9/3Khz372swJA3vOe94hIne/tdiv/5t/8GyvzX//rfxUA8r73vU9EKtjMOct9991nZd7whjfIrbfeKmdnZ4/sAL5M6Cu+4ivkn//zf36c/0eYvvCFL8jXf/3Xyzve8Q75c3/uzxlQOd6HLz297nWvk2/6pm8annuk5/9SqX7Oz8/xwQ9+EC984QvtWM4ZL3zhC/G+973vUezZ44P+8A//EPfdd5+b/9tuuw3Pf/7zbf7f97734fbbb8c3f/M3W5kXvvCFyDnj/e9//yPe58tOn//85wEAT3rSkwAAH/zgB7Hb7dw9+MZv/EY84xnPcPfgOc95Dp7ylKdYmRe/+MW4//778fGPf/wR7P3lp3me8eY3vxkPPPAArl69epz/R5juuecevOQlL3HzDRzfg0eKfu/3fg9Pe9rT8Mf+2B/D93//9+OTn/wkgEd+/i9V9uT/+3//L+Z5dgMHgKc85Sn4b//tvz1KvXr80H333QcAw/nXc/fddx/uuOMOd36z2eBJT3qSlTnS9VEpBa9+9avx7d/+7Xj2s58NoM7vyckJbr/9dlc23oPRPdJzR7qYPvrRj+Lq1au4du0anvCEJ+Atb3kL7r77bnz4wx8+zv8jRG9+85vxn//zf8bv/M7vLM4d34MvPT3/+c/HL/3SL+EbvuEb8OlPfxp/9+/+XfzZP/tn8bGPfewRn/9LBVSOdKTHE91zzz342Mc+hve+972Pdlced/QN3/AN+PCHP4zPf/7z+Lf/9t/iZS97Gd7znvc82t163NCnPvUp/OiP/ije8Y534MqVK492dx6X9F3f9V32/bnPfS6e//zn45nPfCb+9b/+17jpppse0b5cKtXPk5/8ZEzTtLAs/sxnPoM777zzUerV44d0jg/N/5133onPfvaz7vx+v8cf/dEfHe/RDdArX/lKvO1tb8Nv/uZv4ulPf7odv/POO3F+fo7Pfe5zrny8B6N7pOeOdDGdnJzg677u6/C85z0Pr3/96/FN3/RN+Cf/5J8c5/8Rog9+8IP47Gc/iz/9p/80NpsNNpsN3vOe9+Cf/tN/is1mg6c85SnH+/AI0+23344//sf/OH7/93//EX8PLhVQOTk5wfOe9zy8853vtGOlFLzzne/E1atXH8WePT7oWc96Fu688043//fffz/e//732/xfvXoVn/vc5/DBD37QyrzrXe9CKQXPf/7zH/E+XzYSEbzyla/EW97yFrzrXe/Cs571LHf+ec97HrbbrbsH9957Lz75yU+6e/DRj37UAcZ3vOMduPXWW3H33Xc/MgP5MqNSCs7Ozo7z/wjRC17wAnz0ox/Fhz/8Yfv75m/+Znz/93+/fT/eh0eWvvjFL+IP/uAP8NSnPvWRfw9u2BT4UaY3v/nNcnp6Kr/0S78kn/jEJ+RHfuRH5Pbbb3eWxUd6+PSFL3xBPvShD8mHPvQhASD/8B/+Q/nQhz4k//N//k8Rqe7Jt99+u7z1rW+Vj3zkI/KX/tJfGron/6k/9afk/e9/v7z3ve+Vr//6rz+6J18nveIVr5DbbrtN3v3udzu3wAcffNDKvPzlL5dnPOMZ8q53vUt+93d/V65evSpXr1618+oW+KIXvUg+/OEPy6/92q/JV33VVx3dMq+Tfuqnfkre8573yB/+4R/KRz7yEfmpn/opSSnJr//6r4vIcf4fLWKvH5HjffhS04//+I/Lu9/9bvnDP/xD+Y//8T/KC1/4Qnnyk58sn/3sZ0XkkZ3/SwdURET+v//v/5NnPOMZcnJyIt/6rd8qv/3bv/1od+nLhn7zN39TACz+Xvayl4lIdVH+23/7b8tTnvIUOT09lRe84AVy7733ujr+3//7f/J93/d98oQnPEFuvfVW+Wt/7a/JF77whUdhNJePRnMPQN74xjdamYceekj+xt/4G/IVX/EVcvPNN8tf/st/WT796U+7ev7H//gf8l3f9V1y0003yZOf/GT58R//cdntdo/waC4n/fW//tflmc98ppycnMhXfdVXyQte8AIDKSLH+X+0KAKV43340tL3fu/3ylOf+lQ5OTmRr/7qr5bv/d7vld///d+384/k/CcRkYctCzrSkY50pCMd6UhH+hLSpbJROdKRjnSkIx3pSI8vOgKVIx3pSEc60pGO9JilI1A50pGOdKQjHelIj1k6ApUjHelIRzrSkY70mKUjUDnSkY50pCMd6UiPWToClSMd6UhHOtKRjvSYpSNQOdKRjnSkIx3pSI9ZOgKVIx3pSEc60pGO9JilI1A50pGOdKQjHelIj1k6ApUjHelIRzrSkY70mKUjUDnSkY50pCMd6UiPWfr/ATUPB/ek1O5/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Visualize a sample from the training data\n", "sample_index = 0\n", "plt.imshow(X_train[sample_index, 0, :, :, 2], cmap='viridis')\n", "plt.title('Sample Input')\n", "plt.show()\n", "\n", "plt.imshow(y_train[sample_index, 0, :, :, 0], cmap='viridis')\n", "plt.title('Sample Target')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "np.save(\"X_val.npy\", X_val)\n", "np.save(\"Y_val.npy\", y_val)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Model: \"smogseer\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"smogseer\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ input_layer (InputLayer)        │ (None, 1, 291, 512, 6) │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ batch_normalization             │ (None, 1, 291, 512, 6) │            24 │\n",
       "│ (BatchNormalization)            │                        │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv_lstm2d (ConvLSTM2D)        │ (None, 1, 291, 512,    │        12,736 │\n",
       "│                                 │ 16)                    │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ batch_normalization_1           │ (None, 1, 291, 512,    │            64 │\n",
       "│ (BatchNormalization)            │ 16)                    │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv_lstm2d_1 (ConvLSTM2D)      │ (None, 1, 291, 512,    │        55,424 │\n",
       "│                                 │ 32)                    │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ batch_normalization_2           │ (None, 1, 291, 512,    │           128 │\n",
       "│ (BatchNormalization)            │ 32)                    │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv3d (Conv3D)                 │ (None, 1, 291, 512, 1) │           865 │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, \u001b[38;5;34m6\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, \u001b[38;5;34m6\u001b[0m) │ \u001b[38;5;34m24\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv_lstm2d (\u001b[38;5;33mConvLSTM2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, │ \u001b[38;5;34m12,736\u001b[0m │\n", "│ │ \u001b[38;5;34m16\u001b[0m) │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, │ \u001b[38;5;34m64\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ \u001b[38;5;34m16\u001b[0m) │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv_lstm2d_1 (\u001b[38;5;33mConvLSTM2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, │ \u001b[38;5;34m55,424\u001b[0m │\n", "│ │ \u001b[38;5;34m32\u001b[0m) │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv3d (\u001b[38;5;33mConv3D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m291\u001b[0m, \u001b[38;5;34m512\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m865\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 69,241 (270.47 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m69,241\u001b[0m (270.47 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 69,133 (270.05 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m69,133\u001b[0m (270.05 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 108 (432.00 B)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m108\u001b[0m (432.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/100\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\khant\\Documents\\smogseer\\venv\\lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:121: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", " self._warn_if_super_not_called()\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m143s\u001b[0m 472ms/step - loss: 0.7290 - mean_squared_error: 0.1448 - val_loss: 0.6891 - val_mean_squared_error: 0.1320 - learning_rate: 1.0000e-05\n", "Epoch 2/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.7017 - mean_squared_error: 0.1329 - val_loss: 0.6959 - val_mean_squared_error: 0.1347 - learning_rate: 1.0000e-05\n", "Epoch 3/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.6911 - mean_squared_error: 0.1275 - val_loss: 0.6945 - val_mean_squared_error: 0.1335 - learning_rate: 1.0000e-05\n", "Epoch 4/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.6827 - mean_squared_error: 0.1240 - val_loss: 0.6839 - val_mean_squared_error: 0.1284 - learning_rate: 1.0000e-05\n", "Epoch 5/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.6741 - mean_squared_error: 0.1198 - val_loss: 0.6764 - val_mean_squared_error: 0.1248 - learning_rate: 1.0000e-05\n", "Epoch 6/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m141s\u001b[0m 482ms/step - loss: 0.6639 - mean_squared_error: 0.1150 - val_loss: 0.6625 - val_mean_squared_error: 0.1180 - learning_rate: 1.0000e-05\n", "Epoch 7/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m150s\u001b[0m 513ms/step - loss: 0.6518 - mean_squared_error: 0.1083 - val_loss: 0.6491 - val_mean_squared_error: 0.1114 - learning_rate: 1.0000e-05\n", "Epoch 8/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m153s\u001b[0m 523ms/step - loss: 0.6380 - mean_squared_error: 0.1018 - val_loss: 0.6330 - val_mean_squared_error: 0.1035 - learning_rate: 1.0000e-05\n", "Epoch 9/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m143s\u001b[0m 488ms/step - loss: 0.6223 - mean_squared_error: 0.0940 - val_loss: 0.6140 - val_mean_squared_error: 0.0941 - learning_rate: 1.0000e-05\n", "Epoch 10/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.6055 - mean_squared_error: 0.0856 - val_loss: 0.5990 - val_mean_squared_error: 0.0868 - learning_rate: 1.0000e-05\n", "Epoch 11/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.5873 - mean_squared_error: 0.0776 - val_loss: 0.5783 - val_mean_squared_error: 0.0768 - learning_rate: 1.0000e-05\n", "Epoch 12/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.5693 - mean_squared_error: 0.0687 - val_loss: 0.5591 - val_mean_squared_error: 0.0677 - learning_rate: 1.0000e-05\n", "Epoch 13/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 473ms/step - loss: 0.5517 - mean_squared_error: 0.0597 - val_loss: 0.5410 - val_mean_squared_error: 0.0591 - learning_rate: 1.0000e-05\n", "Epoch 14/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 497ms/step - loss: 0.5337 - mean_squared_error: 0.0515 - val_loss: 0.5243 - val_mean_squared_error: 0.0514 - learning_rate: 1.0000e-05\n", "Epoch 15/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 488ms/step - loss: 0.5173 - mean_squared_error: 0.0436 - val_loss: 0.5077 - val_mean_squared_error: 0.0438 - learning_rate: 1.0000e-05\n", "Epoch 16/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 496ms/step - loss: 0.5011 - mean_squared_error: 0.0367 - val_loss: 0.4921 - val_mean_squared_error: 0.0369 - learning_rate: 1.0000e-05\n", "Epoch 17/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m146s\u001b[0m 501ms/step - loss: 0.4868 - mean_squared_error: 0.0304 - val_loss: 0.4785 - val_mean_squared_error: 0.0311 - learning_rate: 1.0000e-05\n", "Epoch 18/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 485ms/step - loss: 0.4738 - mean_squared_error: 0.0247 - val_loss: 0.4654 - val_mean_squared_error: 0.0256 - learning_rate: 1.0000e-05\n", "Epoch 19/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4612 - mean_squared_error: 0.0201 - val_loss: 0.4515 - val_mean_squared_error: 0.0200 - learning_rate: 1.0000e-05\n", "Epoch 20/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 473ms/step - loss: 0.4499 - mean_squared_error: 0.0160 - val_loss: 0.4439 - val_mean_squared_error: 0.0171 - learning_rate: 1.0000e-05\n", "Epoch 21/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4414 - mean_squared_error: 0.0124 - val_loss: 0.4351 - val_mean_squared_error: 0.0137 - learning_rate: 1.0000e-05\n", "Epoch 22/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4354 - mean_squared_error: 0.0095 - val_loss: 0.4283 - val_mean_squared_error: 0.0112 - learning_rate: 1.0000e-05\n", "Epoch 23/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4290 - mean_squared_error: 0.0071 - val_loss: 0.4227 - val_mean_squared_error: 0.0093 - learning_rate: 1.0000e-05\n", "Epoch 24/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m139s\u001b[0m 477ms/step - loss: 0.4218 - mean_squared_error: 0.0056 - val_loss: 0.4174 - val_mean_squared_error: 0.0075 - learning_rate: 1.0000e-05\n", "Epoch 25/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.4188 - mean_squared_error: 0.0041 - val_loss: 0.4146 - val_mean_squared_error: 0.0065 - learning_rate: 1.0000e-05\n", "Epoch 26/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 467ms/step - loss: 0.4148 - mean_squared_error: 0.0032 - val_loss: 0.4108 - val_mean_squared_error: 0.0053 - learning_rate: 1.0000e-05\n", "Epoch 27/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 496ms/step - loss: 0.4136 - mean_squared_error: 0.0025 - val_loss: 0.4082 - val_mean_squared_error: 0.0044 - learning_rate: 1.0000e-05\n", "Epoch 28/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m154s\u001b[0m 527ms/step - loss: 0.4110 - mean_squared_error: 0.0019 - val_loss: 0.4063 - val_mean_squared_error: 0.0038 - learning_rate: 1.0000e-05\n", "Epoch 29/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 487ms/step - loss: 0.4096 - mean_squared_error: 0.0016 - val_loss: 0.4058 - val_mean_squared_error: 0.0037 - learning_rate: 1.0000e-05\n", "Epoch 30/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4096 - mean_squared_error: 0.0013 - val_loss: 0.4050 - val_mean_squared_error: 0.0034 - learning_rate: 1.0000e-05\n", "Epoch 31/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 473ms/step - loss: 0.4102 - mean_squared_error: 0.0012 - val_loss: 0.4044 - val_mean_squared_error: 0.0033 - learning_rate: 1.0000e-05\n", "Epoch 32/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.4090 - mean_squared_error: 0.0011 - val_loss: 0.4040 - val_mean_squared_error: 0.0031 - learning_rate: 1.0000e-05\n", "Epoch 33/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4087 - mean_squared_error: 0.0010 - val_loss: 0.4033 - val_mean_squared_error: 0.0029 - learning_rate: 1.0000e-05\n", "Epoch 34/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4079 - mean_squared_error: 0.0010 - val_loss: 0.4037 - val_mean_squared_error: 0.0030 - learning_rate: 1.0000e-05\n", "Epoch 35/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 485ms/step - loss: 0.4109 - mean_squared_error: 9.6707e-04 - val_loss: 0.4032 - val_mean_squared_error: 0.0029 - learning_rate: 1.0000e-05\n", "Epoch 36/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m153s\u001b[0m 525ms/step - loss: 0.4092 - mean_squared_error: 9.3389e-04 - val_loss: 0.4035 - val_mean_squared_error: 0.0030 - learning_rate: 1.0000e-05\n", "Epoch 37/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m154s\u001b[0m 529ms/step - loss: 0.4071 - mean_squared_error: 9.4938e-04 - val_loss: 0.4025 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 38/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m143s\u001b[0m 490ms/step - loss: 0.4065 - mean_squared_error: 9.0768e-04 - val_loss: 0.4027 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 39/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4091 - mean_squared_error: 8.5881e-04 - val_loss: 0.4029 - val_mean_squared_error: 0.0028 - learning_rate: 1.0000e-05\n", "Epoch 40/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 471ms/step - loss: 0.4084 - mean_squared_error: 8.5700e-04 - val_loss: 0.4027 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 41/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4080 - mean_squared_error: 8.3285e-04 - val_loss: 0.4026 - val_mean_squared_error: 0.0028 - learning_rate: 1.0000e-05\n", "Epoch 42/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4066 - mean_squared_error: 8.5810e-04 - val_loss: 0.4024 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 43/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 471ms/step - loss: 0.4102 - mean_squared_error: 8.3282e-04 - val_loss: 0.4024 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 44/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m143s\u001b[0m 490ms/step - loss: 0.4078 - mean_squared_error: 7.6995e-04 - val_loss: 0.4025 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 45/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m150s\u001b[0m 515ms/step - loss: 0.4082 - mean_squared_error: 7.7627e-04 - val_loss: 0.4023 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 46/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m148s\u001b[0m 507ms/step - loss: 0.4092 - mean_squared_error: 7.8152e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 47/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 492ms/step - loss: 0.4082 - mean_squared_error: 7.3046e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 48/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4087 - mean_squared_error: 7.4382e-04 - val_loss: 0.4021 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 49/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4066 - mean_squared_error: 7.5448e-04 - val_loss: 0.4021 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 50/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4072 - mean_squared_error: 7.7316e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 51/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 473ms/step - loss: 0.4084 - mean_squared_error: 7.0784e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 52/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 471ms/step - loss: 0.4087 - mean_squared_error: 7.3632e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 53/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 486ms/step - loss: 0.4063 - mean_squared_error: 7.1279e-04 - val_loss: 0.4020 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 54/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 497ms/step - loss: 0.4082 - mean_squared_error: 6.9338e-04 - val_loss: 0.4017 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 55/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m149s\u001b[0m 511ms/step - loss: 0.4068 - mean_squared_error: 6.9151e-04 - val_loss: 0.4017 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 56/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m141s\u001b[0m 484ms/step - loss: 0.4070 - mean_squared_error: 6.7310e-04 - val_loss: 0.4021 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 57/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4069 - mean_squared_error: 6.8701e-04 - val_loss: 0.4019 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 58/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4067 - mean_squared_error: 7.1130e-04 - val_loss: 0.4019 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 59/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4079 - mean_squared_error: 6.7344e-04 - val_loss: 0.4021 - val_mean_squared_error: 0.0026 - learning_rate: 1.0000e-05\n", "Epoch 60/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4085 - mean_squared_error: 6.8823e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 61/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4087 - mean_squared_error: 6.4379e-04 - val_loss: 0.4018 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 62/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m139s\u001b[0m 476ms/step - loss: 0.4060 - mean_squared_error: 6.5046e-04 - val_loss: 0.4017 - val_mean_squared_error: 0.0025 - learning_rate: 1.0000e-05\n", "Epoch 63/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4051 - mean_squared_error: 6.1816e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 64/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 465ms/step - loss: 0.4089 - mean_squared_error: 6.1312e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 65/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m142s\u001b[0m 486ms/step - loss: 0.4068 - mean_squared_error: 6.4825e-04 - val_loss: 0.4014 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 66/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m151s\u001b[0m 517ms/step - loss: 0.4057 - mean_squared_error: 6.1512e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 67/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m155s\u001b[0m 532ms/step - loss: 0.4075 - mean_squared_error: 6.2446e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 68/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 465ms/step - loss: 0.4074 - mean_squared_error: 5.9204e-04 - val_loss: 0.4014 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 69/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.4068 - mean_squared_error: 6.0754e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 70/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4056 - mean_squared_error: 6.0360e-04 - val_loss: 0.4023 - val_mean_squared_error: 0.0027 - learning_rate: 1.0000e-05\n", "Epoch 71/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m139s\u001b[0m 475ms/step - loss: 0.4064 - mean_squared_error: 6.0216e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 72/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 467ms/step - loss: 0.4074 - mean_squared_error: 5.6818e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-05\n", "Epoch 73/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4077 - mean_squared_error: 5.8116e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 74/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m146s\u001b[0m 500ms/step - loss: 0.4056 - mean_squared_error: 5.9187e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-05\n", "Epoch 75/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m150s\u001b[0m 515ms/step - loss: 0.4066 - mean_squared_error: 5.6511e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 76/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m147s\u001b[0m 504ms/step - loss: 0.4078 - mean_squared_error: 5.5301e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 77/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 472ms/step - loss: 0.4076 - mean_squared_error: 5.5795e-04 - val_loss: 0.4017 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 78/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4045 - mean_squared_error: 5.5711e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-05\n", "Epoch 79/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 465ms/step - loss: 0.4070 - mean_squared_error: 5.5179e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 80/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 465ms/step - loss: 0.4070 - mean_squared_error: 5.6309e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 81/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.4083 - mean_squared_error: 5.5748e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-05\n", "Epoch 82/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m140s\u001b[0m 480ms/step - loss: 0.4079 - mean_squared_error: 5.1798e-04 - val_loss: 0.4014 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 83/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 494ms/step - loss: 0.4055 - mean_squared_error: 5.5006e-04 - val_loss: 0.4015 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 84/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 508ms/step - loss: 0.4075 - mean_squared_error: 5.0081e-04\n", "Epoch 84: ReduceLROnPlateau reducing learning rate to 9.999999747378752e-07.\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m150s\u001b[0m 513ms/step - loss: 0.4075 - mean_squared_error: 5.0092e-04 - val_loss: 0.4016 - val_mean_squared_error: 0.0024 - learning_rate: 1.0000e-05\n", "Epoch 85/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 493ms/step - loss: 0.4071 - mean_squared_error: 5.4880e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 86/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.4065 - mean_squared_error: 5.2907e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 87/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.4068 - mean_squared_error: 5.1186e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 88/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 465ms/step - loss: 0.4057 - mean_squared_error: 5.3199e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 89/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m136s\u001b[0m 466ms/step - loss: 0.4072 - mean_squared_error: 5.4235e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 90/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 469ms/step - loss: 0.4053 - mean_squared_error: 5.0030e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 91/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m140s\u001b[0m 480ms/step - loss: 0.4060 - mean_squared_error: 5.1027e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 92/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 493ms/step - loss: 0.4064 - mean_squared_error: 5.2571e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 93/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m144s\u001b[0m 493ms/step - loss: 0.4065 - mean_squared_error: 5.3916e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 94/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m145s\u001b[0m 497ms/step - loss: 0.4077 - mean_squared_error: 5.1107e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 95/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m143s\u001b[0m 490ms/step - loss: 0.4085 - mean_squared_error: 5.0312e-04 - val_loss: 0.4013 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 96/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m137s\u001b[0m 470ms/step - loss: 0.4053 - mean_squared_error: 4.9508e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 97/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 467ms/step - loss: 0.4073 - mean_squared_error: 4.9562e-04\n", "Epoch 97: ReduceLROnPlateau reducing learning rate to 1e-07.\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.4073 - mean_squared_error: 4.9570e-04 - val_loss: 0.4010 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-06\n", "Epoch 98/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m139s\u001b[0m 474ms/step - loss: 0.4071 - mean_squared_error: 5.2952e-04 - val_loss: 0.4010 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-07\n", "Epoch 99/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.4060 - mean_squared_error: 4.8378e-04 - val_loss: 0.4012 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-07\n", "Epoch 100/100\n", "\u001b[1m292/292\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m138s\u001b[0m 474ms/step - loss: 0.4075 - mean_squared_error: 5.2382e-04 - val_loss: 0.4011 - val_mean_squared_error: 0.0023 - learning_rate: 1.0000e-07\n", "Restoring model weights from the end of the best epoch: 97.\n" ] } ], "source": [ "# Define the model with correct input shape\n", "inp = layers.Input(shape=(1, X_data_clean.shape[2], X_data_clean.shape[3], X_data_clean.shape[4]))\n", "\n", "x = layers.BatchNormalization()(inp)\n", "x = layers.ConvLSTM2D(\n", " filters=16,\n", " kernel_size=(3, 3),\n", " padding=\"same\",\n", " return_sequences=True,\n", " activation=\"tanh\",\n", " recurrent_activation=\"sigmoid\",\n", " kernel_initializer=\"glorot_uniform\"\n", ")(x)\n", "x = layers.BatchNormalization()(x)\n", "x = layers.ConvLSTM2D(\n", " filters=32,\n", " kernel_size=(3, 3),\n", " padding=\"same\",\n", " return_sequences=True,\n", " activation=\"tanh\",\n", " recurrent_activation=\"sigmoid\",\n", " kernel_initializer=\"glorot_uniform\"\n", ")(x)\n", "x = layers.BatchNormalization()(x)\n", "x = layers.Conv3D(\n", " filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n", ")(x)\n", "\n", "model = keras.models.Model(inp, x, name=\"smogseer\")\n", "\n", "# Use a reduced learning rate and gradient clipping\n", "optimizer = keras.optimizers.Adam(learning_rate=1e-5, clipnorm=1.0)\n", "model.compile(\n", " loss=keras.losses.binary_crossentropy,\n", " optimizer=optimizer,\n", " metrics=['mean_squared_error']\n", ")\n", "\n", "# Print the model summary\n", "model.summary()\n", "\n", "# Data Generator Class\n", "\n", "class DataGenerator(Sequence):\n", " def __init__(self, X_data, y_data, batch_size):\n", " self.X_data = X_data\n", " self.y_data = y_data\n", " self.batch_size = batch_size\n", " self.indices = np.arange(X_data.shape[0])\n", " \n", " def __len__(self):\n", " return int(np.ceil(len(self.indices) / self.batch_size))\n", " \n", " def __getitem__(self, index):\n", " batch_indices = self.indices[index * self.batch_size:(index + 1) * self.batch_size]\n", " batch_X = self.X_data[batch_indices]\n", " batch_y = self.y_data[batch_indices]\n", " return batch_X, batch_y\n", "\n", " def on_epoch_end(self):\n", " np.random.shuffle(self.indices)\n", "\n", "batch_size = 1\n", "train_generator = DataGenerator(X_train, y_train, batch_size)\n", "val_generator = DataGenerator(X_val, y_val, batch_size)\n", "\n", "# Define callbacks for monitoring and adjusting learning rate\n", "callbacks = [\n", " keras.callbacks.ReduceLROnPlateau(\n", " monitor='val_loss', factor=0.1, patience=10, verbose=1, min_lr=1e-7\n", " ),\n", " keras.callbacks.EarlyStopping(\n", " monitor='val_loss', patience=15, verbose=1, restore_best_weights=True\n", " ),\n", " keras.callbacks.TensorBoard(log_dir='./logs')\n", "]\n", "\n", "# Train the model using data generators\n", "history = model.fit(train_generator, epochs=100, validation_data=val_generator, callbacks=callbacks)\n", "# Save the model\n", "model.save('smogseer.keras')\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 814ms/step\n", "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 456ms/step - loss: 0.4003 - mean_squared_error: 0.0019\n", "Validation Loss: 0.40102294087409973\n", "Validation Accuracy: 0.0022550118155777454\n" ] } ], "source": [ "## LOAD CHECKPOINTS IF NEEDED\n", "# \n", "\n", "# Load the model\n", "model = load_model('smogseer100.keras')\n", "\n", "# Run predictions on validation data\n", "predictions = model.predict(X_val)\n", "\n", "# Evaluate the model on validation data\n", "val_loss, val_accuracy = model.evaluate(X_val, y_val)\n", "print(f\"Validation Loss: {val_loss}\")\n", "print(f\"Validation Accuracy: {val_accuracy}\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "\n", "# Plot comparisons and training history\n", "\n", "def plot_comparison(y_true, y_pred, index, save_path):\n", " \"\"\"\n", " Plots the ground truth and the predicted output for a given index.\n", " \n", " Parameters:\n", " - y_true: Ground truth data\n", " - y_pred: Predicted data\n", " - index: Index of the sample to plot\n", " - save_path: Path to save the plot\n", " \"\"\"\n", " fig, axes = plt.subplots(1, 2, figsize=(12, 6))\n", "\n", " # Plot ground truth\n", " ax = axes[0]\n", " ax.imshow(y_true[index, 0, :, :, 0], cmap='viridis')\n", " ax.set_title('Ground Truth')\n", " ax.axis('off')\n", "\n", " # Plot prediction\n", " ax = axes[1]\n", " ax.imshow(y_pred[index, 0, :, :, 0], cmap='viridis')\n", " ax.set_title('Prediction')\n", " ax.axis('off')\n", "\n", " plt.tight_layout()\n", " plt.savefig(save_path)\n", " plt.close()\n", "\n", "# Visualize a few samples\n", "num_samples_to_plot = 5\n", "for i in range(num_samples_to_plot):\n", " plot_comparison(y_val, predictions, i, f'comparison_plot_100_{i}.png')\n", "\n", "# Plot training history\n", "def plot_training_history(history, save_path):\n", " \"\"\"\n", " Plots the training and validation loss and accuracy over epochs.\n", "\n", " Parameters:\n", " - history: Keras History object\n", " - save_path: Path to save the plot\n", " \"\"\"\n", " fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))\n", "\n", " # Plot loss\n", " ax1.plot(history.history['loss'], label='Training Loss')\n", " ax1.plot(history.history['val_loss'], label='Validation Loss')\n", " ax1.set_title('Loss over epochs')\n", " ax1.set_xlabel('Epoch')\n", " ax1.set_ylabel('Loss')\n", " ax1.legend()\n", "\n", " # Plot accuracy\n", " ax2.plot(history.history['mean_squared_error'], label='Training MSE')\n", " ax2.plot(history.history['val_mean_squared_error'], label='Validation MSE')\n", " ax2.set_title('MSE over epochs')\n", " ax2.set_xlabel('Epoch')\n", " ax2.set_ylabel('MSE')\n", " ax2.legend()\n", "\n", " plt.tight_layout()\n", " plt.savefig(save_path)\n", " plt.close()\n", "\n", "# Plot training history\n", "plot_training_history(history, 'training_history_epoch100.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 2 }